<span> energy produced by flow of electric charge describes a electrical energy
because movement of electric charge do effect the work on system
so correct option is B
hope it helps</span>
<span> d = r*t is the basic distance equation
d = 6000 km
t with the tail wind = 6 hr
r with the tail wind = speed of the plane + wind speed = s + w
t with the head wind = 7.5 hr
r with the head wind = speed of the plane - wind speed = s-w
(s+w)*6 = 6000
(s-w)*7.5 = 6000
s + w = 1000
s - w = 800
</span><span> 2s = 1800
s = 900 km/h
s + w = 1000
w = 100
Check the anwer by calculating the return trip.
(900-100) * 7.5 = 800 * 7.5
800 * 7.5 = 6000 km
Answer: The rate of the jet in still air is 900 km/h. The rate of the wind is 100 km/hr.</span>
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C