Answer:
Molarity of HCl = 1.6M
Explanation:
The chemical reaction equation is;
HCl(aq) + NaOH(aq) —> NaCl(aq) + H2O(l)
Now, molarity = number of moles/volume
Thus, for NaOH, we have;
Number of moles = molarity × volume = 2M × (20/1000) L
Number of moles = 0.04 moles
Using the coefficients in the chemical equation above, we can find the corresponding number of moles for HCl.
Number of moles of HCl = 0.04 moles NaOH × (1 mole of HCl/1 mole of HCl) = 0.04 moles of HCl
Thus;
Molarity of HCl = 0.04/(25/1000)
Molarity of HCl = 1.6M
Answer:
An exothermic process releases heat, causing the temperature of the immediate surroundings to rise. An endothermic process absorbs heat and cools the surroundings
Answer:
Option D
Explanation:
Rutherford deduced that the atomic nucleus was positively charged because the alpha particles that he fired at the metal foils were positively charged, and like charges repel. Alpha particles consist of two protons and two neutrons, so they are positively charged. In Rutherford's experiments most of the alpha particles passed straight through the foil without being deflected. However, occasionally the alpha particles were deflected in their paths, and rarely the alpha particles were deflected backward at a 180 degree angle.
Since like charges repel, Rutherford concluded that the cause of the deflections of the positively charged alpha particles had to be something within the atom that was also positively charged. Rutherford concluded from his metal foil experiments that most of an atom is empty space with a tiny, dense, positively charged nucleus at the center that contains most of the mass of the atom.
Answer:
15.95 g
Explanation:
Calculation of the moles of sulfur as:-
Mass = 3.5 g
Molar mass of sulfur = 32.065 g/mol
The formula for the calculation of moles is shown below:
Thus,
From the reaction,

1 mole of sulfur on reaction forms 1 mole of sulfur hexafluoride
0.1092 mole of sulfur on reaction forms 0.1092 mole of sulfur hexafluoride
Molar mass of sulfur hexafluoride = 146.06 g/mol
Mass= Moles*Molar mass = 0.1092*146.06 g = 15.95 g
<u>15.95 g is the maximum amount of
that can be produced from the reaction of 3.5 g of sulfur with of fluorine.</u>