1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
9

When the resistance in a circuit remains constant, how are the voltage and current related?

Physics
2 answers:
vagabundo [1.1K]3 years ago
8 0

Explanation:

The current doubles when the voltage doubles because they are directly proportional.

stich3 [128]3 years ago
4 0

Answer:

The current doubles when the voltage doubles because they are directly proportional.

Explanation:

You might be interested in
Define bond length using your own words​
Brut [27]

Answer:

the free encyclopedia. In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.

Explanation:

6 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
An astronaut on Pluto attaches a small brass ball to a 1.00-m length of string and makes a simple pendulum. She times 10 complet
pickupchik [31]

Answer:

The acceleration due to gravity at Pluto is 0.0597 m/s^2.

Explanation:

Length, L = 1 m

10 oscillations in 257 seconds

Time period, T = 257/10 = 25.7 s

Let the acceleration due to gravity is g.

Use the formula of time period of simple pendulum

T = 2\pi\sqrt{\frac{L}{g}}\\\\25.7 = 2 \times 31.4\sqrt{\frac{1}{g}}\\\\g = 0.0597 m/s^2

7 0
3 years ago
(EARTH SPACE SCIENCE QUESTION)
Sergeeva-Olga [200]

*may be egg shaped

*has no new stars being formed

*has almost no gas or dust between stars

I literally just took notes on elliptical galaxies a week ago wow

8 0
2 years ago
Read 2 more answers
When the weight of the object increase block what is the force of friction applied? Explanation?
erik [133]

Answer:

There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.

8 0
2 years ago
Other questions:
  • Is crumpling a sheet of paper a physical or chemical change? Why?
    13·2 answers
  • Do
    7·1 answer
  • A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE g
    15·1 answer
  • If a train is going 60 m/s hits the brakes, and it takes the train 1 minute 25 seconds to stop, what is the train’s acceleration
    12·1 answer
  • ¿Cuánto tiempo tardaré en completar la distancia de una maratón 89.66km si corro a una velocidad media de 756.66km\h?
    12·1 answer
  • Question 1 of 10
    14·1 answer
  • Which fundamental force causes some forms of radioactivity? A. Gravity B. Electromagnetic force C. Strong nuclear force D. Weak
    14·1 answer
  • A(n) __________ is an intentionally constructed, low-impedance electrically conductive path designed and intended to carry curre
    9·1 answer
  • How do spectroscopes help with studying of distance stars?
    12·1 answer
  • 1.Una partícula de masa m = 0.2 [kg] está unido a dos resortes idénticos (de longitud L = 1.2 [m]) sobre la parte superior de un
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!