<span>Electrical discharge from a charged object
is your answer</span>
A book falls to the floor.
A car skids to a stop.
A foam ball launches from a spring (Are the right answer, just did this one 4:34 pm Jan/21/19)
Answer:
A mid ocean ridge possibly a plate margin spreading area
Explanation:
Answer:
E3 = 3.03 10⁻¹⁶ kJ, E4 = 4.09 10⁻¹⁶ kJ and E5 = 4.58 10⁻¹⁶ kJ
Explanation:
They give us some spectral lines of the Balmer series, let's take the opportunity to place the values in SI units
n = 3 λ = 656.3 nm = 656.3 10⁻⁹ m
n = 4 λ = 486.1 nm = 486.1 10⁻⁹ m
n = 5 λ=434.0 nm = 434.0 10⁻⁹ m
Let's use the Planck equation
E = h f
The speed of light equation
c = λ f
replace
E = h c /λ
Where h is the Planck constant that is worth 6.63 10⁻³⁴ J s and c is the speed of light that is worth 3 10⁸ m / s
Let's calculate the energies
E = 6.63 10⁻³⁴ 3 10⁸ / λ
E = 19.89 10⁻²⁶ /λ
n = 3
E3 = 19.89 10⁻²⁶ / 656.3 10⁻⁹
E3 = 3.03 10⁻¹⁹ J
1 kJ = 10³ J
E3 = 3.03 10⁻¹⁶ kJ
n = 4
E4 = 19.89 10⁻²⁶ /486.1 10⁻⁹
E4 = 4.09 10⁻¹⁹ J
E4 = 4.09 10⁻¹⁶ kJ
n = 5
E5 = 19.89 10⁻²⁶ /434.0 10⁻⁹
E5 = 4.58 10⁻¹⁹ J
E5 = 4.58 10⁻¹⁶ kJ
Answer: 430 nm.
Explanation:
The relation of wavelength and frequency is:
Formula used :
where,
= frequency =
= wavelength = ?
c = speed of light = 
Now put all the given values in this formula, we get

Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.