1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
6

A small space probe of mass 170 kg is launched from a spacecraft near Mars. It travels toward the surface of Mars, where it will

eventually land. At a time 22.9 seconds after it is launched, the probe is at location <5600, 7200, 0> m, and at this same instant its momentum is <51000, -7000, 0> kg·m/s. At this instant, the net force on the probe due to the gravitational pull of Mars plus the air resistance acting on the probe is <-4000, -780, 0> N.
Assuming that the net force on the probe is approximately constant during this time interval, what is the change of the momentum of the probe in the time interval from 22.6 seconds after the probe is launched to 22.9 seconds after the launch?
Physics
1 answer:
alukav5142 [94]3 years ago
6 0

Answer:

The change  in momentum is  \Delta p =   kg \cdot m/s      

Explanation:

From the question we are told that  

       The mass of the probe is  m = 170 kg

       The location of the prob at time t = 22.9 s is  A  =

       The  momentum at time  t = 22.9 s is  p = < 51000, -7000, 0> kg m/s

        The net force on the probe is  F =  N

Generally the change in momentum is mathematically represented as

              \Delta p = F * \Delta t

The initial time is   22.6 s

 The final time  is  22.9 s

             Substituting values  

           \Delta p =  * (22.9 - 22.6)

            \Delta p =  * (0.3)  

              \Delta p =   kg \cdot m/s        

 

You might be interested in
A 0.10 g honeybee acquires a charge of +23 pC while flying.
kari74 [83]

Answer:

a) \frac{F}{w} =2.347\times 10^{-6}\ N

b) E=4.2609\times 10^7\ N.C^{-1} parallel to the earth surface.

  • In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.

Explanation:

Given:

mass of the bee, m=10^{-4}\ kg

charge acquired by the bee, q_2=23\times 10^{-12}\ C

a.

Electrical field near the earth surface, E=100\ N.C^{-1}

Now the electric force on the bee:

we know:

F=\frac{1}{4\pi.\epsilon_0} \times \frac{q_1.q_2}{r^2}

F=E.q_2

F=100\times 23\times 10^{-12}

F=23\times 10^{-10}\ N

The weight of the bee:

w=m.g

w=10^{-4}\times 9.8

w=9.8\times10^{-4}\ N

Therefore the ratio :

\frac{F}{w} =\frac{23\times 10^{-10}}{9.8\times10^{-4}}

\frac{F}{w} =2.347\times 10^{-6}\ N

b.

The condition for the bee to hang is its weight must get balanced by the electric force acing equally in the opposite direction.

So,

F=9.8\times10^{-4}\ N

E.q_2=9.8\times10^{-4}\ N

E\times 23\times 10^{-12}=9.8\times10^{-4}\ N

E=4.2609\times 10^7\ N.C^{-1} parallel to the earth surface.

  • In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
3 0
3 years ago
If your weight is 100N and you run up a flight of stairs that is 6 m high and it takes
fenix001 [56]

Answer:

power=300watt

Explanation:

5 0
3 years ago
What is the relationship between amplitude and frequency of a wave?.
kondaur [170]

Answer:

The relationship between the wave's amplitude and frequency is such that it is inversely proportional to the frequency. The amplitude decreases as the frequency increases. The amplitude increases as the frequency decreases. The higher the energy of a wave, the higher the amplitude. The lower the energy, the lower the amplitude. Energy has no effect on wavelength, speed, or frequency, only the amplitude.

Explanation:

5 0
2 years ago
A train traveled from Station A to Station B at an average speed of 80 kilometers per hour and then from Station B to Station C
Vinil7 [7]

Answer:

1)

75 kmh⁻¹

2)

75 kmh⁻¹

Explanation:

1)

v_{ab} = Speed of train from station A to station B = 80 kmh⁻¹

d_{ab} = distance traveled from station A to station B

t_{ab} = time of travel between station A to station B

we know that

Time = \frac{distance}{speed}

t_{ab} = \frac{d_{ab}}{v_{ab}} = \frac{d_{ab}}{80}

d_{bc} = distance traveled from station B to station C

v_{bc} = Speed of train from station B to station C = 60 kmh⁻¹

t_{bc} = \frac{d_{bc}}{v_{bc}} = \frac{d_{bc}}{60}

Total distance traveled is given as

d = d_{ab} + d_{bc}

Total time of travel is given as

t = t_{ab} + t_{bc}

Average speed is given as

v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{d_{ab} + d_{bc}}{(\frac{d_{ab}}{80} ) + (\frac{d_{bc}}{60} ) }

Given that :

d_{ab} = 4 d_{bc}

So

v_{avg} = \frac{4 d_{bc} + d_{bc}}{(\frac{4 d_{bc}}{80} ) + (\frac{d_{bc}}{60} ) }\\v_{avg} = \frac{4 + 1}{(\frac{4 }{80} ) + (\frac{1}{60} ) }\\v_{avg} = 75 kmh^{-1}

2)

v_{ab} = Speed of train from station A to station B = 80 kmh⁻¹

t_{ab} = time of travel between station A to station B

d_{ab} = distance traveled from station A to station B

we know that

distance = (speed) (time)

d_{ab} = v_{ab} t_{ab}\\d_{ab} = 80 t_{ab}

d_{bc} = distance traveled from station B to station C

v_{bc} = Speed of train from station B to station C = 60 kmh⁻¹

t_{bc} = time of travel for train from station B to station C

we know that

distance = (speed) (time)

d_{bc} = v_{bc} t_{bc}\\d_{bc} = 60 t_{bc}

Total distance traveled is given as

d = d_{ab} + d_{bc}\\d = 80 t_{ab} + 60 t_{bc}

Total time of travel is given as

t = t_{ab} + t_{bc}

Average speed is given as

v_{avg} = \frac{d}{t} \\v_{avg} = \frac{d_{ab} + d_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}

Given that :

t_{ab} = 3 t_{bc}

So

v_{avg} = \frac{80 t_{ab} + 60 t_{bc}}{t_{ab} + t_{bc}}\\v_{avg} = \frac{80 (3) t_{bc} + 60 t_{bc}}{(3) t_{bc} + t_{bc}}\\v_{avg} = \frac{(300) t_{bc}}{(4) t_{bc}}\\v_{avg} = 75 kmh^{-1}

4 0
3 years ago
For a Physics course containing 10 students, the maximum point total for the quarter was 200. The point totals for the 10 studen
Talja [164]

Answer:

130.5

Explanation:

According to the stemplot attached (Which I think it is, and if not, then you only need to replace the procedure with your data and you should be fine), you need to calculate first the points of all ten students. In that plot, we can easily calculate the points.

The first number in the colum represents the centen of the point, while the numbers of the second column, represents the units of that centen, for example if you see:

16 | 8 5 6

This means that the point for the students are 168, 165 and 166. Three students, three points.

If you watch the stemplot, the points for the students are:

116, 118, 121, 124, 128, 133, 137, 142, 146 and 179.

The median can be calculated using the mean between the two values in the middle of the sequence.

In this case, half of ten is 5, so, the numbers from the middle in this sequence are 128 and 133, therefore:

Median = 128 + 133 / 2 = 130.5

5 0
4 years ago
Other questions:
  • True or False: The Q value (the RBE) for alpha particles is higher than the Q value of neutrons and beta particles.?
    6·1 answer
  • Pls someone help with number 3
    11·1 answer
  • 5. A 5.0 kg object accelerates uniformly from rest for 5.0 s and reaches a final velocity of 20.0 m/s. At 3.0 s, what is the obj
    6·1 answer
  • Why people won’t want to live near wind turbines.
    15·2 answers
  • Consider the following neutral electron configurations in which 'n' has a constant value. Which configuration would belong to th
    5·1 answer
  • Please help with my geology hw
    11·1 answer
  • How would you explain digestion system using three words ??
    10·2 answers
  • What two simple machines are found in a bike?
    12·1 answer
  • Which is an example of a chemical change?
    8·1 answer
  • A wire that is 1.0 m long with a mass of 90 g is under a tension of 710 N. When a transverse wave travels on the wire, its wavel
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!