1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pie
3 years ago
10

1)Determine, in terms of unit vectors, the resultant of the five forces illustrated in the figure, Consider F1=20 N, F2= 12 N, F

3=17 N. F4=15N and F5=9N
2)In the situation illustrated below, two blocks of Ma and Mb masses are suspended between two walls using ropes. If Ma=2kg, calculate the tension developed in the segments AB, BC and CD and the mass of block B for the equilibrium condition

3)In the figure below, the crane and its AB jib have together 390kg and center of mass in G1. If the 90kg BCD cage and the 80kg man have center of mass located in G2 and G3, respectively, (a) calculate the angle θ of inclination of the boom for which the crane is on the eminence of tumbling. (b) for which size the boom should be reduced (retracting its point B) so that it can be positioned horizontally (θ=0) and the crane does not tip over. Consider that the cage always stays in the horizontal position

4) A 1.7kg plate with center of mass in G is supported by a bar and three cables, as shown in the figure below. Determine the voltage developed in the AB, AC and DE cables and the reaction (there is only one) at point O for the equilibrium condition

Physics
1 answer:
LiRa [457]3 years ago
8 0

Explanation:

1) F₁ lies in a plane perpendicular to the xy plane, 60° from the x axis.  The angle between F₁ and the +z axis is 30°.  Therefore, the vector is:

<F₁> = 20 (sin 30° cos 60° i + sin 30° sin 60° j + cos 30° k)

<F₁> = 20 (¼ i + ¼√3 j + ½√3 k)

<F₁> = 5 i + 5√3 j + 10√3 k

F₂ is in the xy plane.  Its slope is -24/7.  The vector is:

<F₂> = 12 (-⁷/₂₅ i + ²⁴/₂₅ j + 0 k)

<F₂> = -3.36 i + 11.52 j

F₃ is parallel to the +x axis.  The vector is:

<F₃> = 17 (i + 0 j + 0 k)

<F₃> = 17 i

F₄ is parallel to the -z axis.  The vector is:

<F₄> = 15 (0 i + 0 j − k)

<F₄> = -15 k

F₅ is in the xy plane.  It forms a 15° angle with the -y axis.  The vector is:

<F₅> = 9 (-sin 15° i − cos 15° j + 0 k)

<F₅> = -9 sin 15° i − 9 cos 15° j

The resultant vector is therefore:

<F> = (5 − 3.36 + 17 − 9 sin 15°) i + (5√3 + 11.52 − 9 cos 15°) j + (10√3 − 15) k

<F> = 16.31 i + 11.49 j + 2.32 k

2) Sum of forces at point B in the x direction:

∑F = ma

Tbc cos 40° − ¹⁵/₁₇ Tab = 0

Tbc cos 40° = ¹⁵/₁₇ Tab

Tbc = 1.15 Tab

Sum of forces at point B in the y direction:

∑F = ma

Tbc sin 40° + ⁸/₁₇ Tab − mAg = 0

Tbc sin 40° + ⁸/₁₇ Tab = (2 kg) (10 m/s²)

(1.15 Tab) sin 40° + ⁸/₁₇ Tab = 20 N

1.21 Tab = 20 N

Tab = 16.52 N

Tbc = 19.02 N

Sum of forces at point C in the x direction:

∑F = ma

Tcd sin 25° − Tbc cos 40° = 0

Tcd sin 25° = Tbc cos 40°

Tcd = 1.81 Tbc

Tcd = 34.48 N

3(a) When the crane is on the verge of tipping, the center of gravity is directly over point F.  Relative to point A:

3.7 m = [ (390 kg) (0.9 m) + (90 kg) (9 m cos θ + 1.7 m) + (80 kg) (9 m cos θ + 2.9 m) ] / (390 kg + 90 kg + 80 kg)

2072 kgm = 351 kgm + 810 kgm cos θ + 153 kgm + 720 kgm cos θ + 232 kgm

1336 kgm = 1530 kgm cos θ

θ = 29.17°

3(b) 3.7 m = [ (390 kg) (0.9 m) + (90 kg) (x + 1.7 m) + (80 kg) (x + 2.9 m) ] / (390 kg + 90 kg + 80 kg)

2072 kgm = 351 kgm + (90 kg) x + 153 kgm + (80 kg) x + 232 kgm

1336 kgm = (170 kg) x

x = 7.86 m

4) Find the lengths of the cables.

Lab = √((2 m)² + (3 m)² + (5 m)²)

Lab = √38 m

Lac = √((2 m)² + (3 m)² + (5 m)²)

Lac = √38 m

Lde = √((2 m)² + (3 m)²)

Lde = √13 m

Sum of forces in the x direction:

∑F = ma

-5/√38 Fab − 5/√38 Fac − 2/√13 Fde + Rx = 0

Sum of forces in the y direction:

∑F = ma

2/√38 Fab − 2/√38 Fac = 0

Fab = Fac

Sum of forces in the z direction:

∑F = ma

3/√38 Fab + 3/√38 Fac + 3/√13 Fde − mg = 0

Sum of moments about the y-axis:

∑τ = Iα

(3/√38 Fab) (5 m) + (3/√38 Fac) (5 m) + (3/√13 Fde) (2 m) − (mg) (2 m) = 0

Substitute Fab = Fac and simplify:

6/√38 Fab + 3/√13 Fde − mg = 0

30/√38 Fab + 6/√13 Fde − 2mg = 0

Double first equation:

12/√38 Fab + 6/√13 Fde − 2mg = 0

Subtract from the second equation:

28/√38 Fab = 0

Fab = 0

Fac = 0

Solve for Fde:

3/√38 Fab + 3/√38 Fac + 3/√13 Fde − mg = 0

3/√13 Fde = mg

3/√13 Fde = (1.7 kg) (10 m/s²)

Fde = 20.43 N

Solve for Rx:

-5/√38 Fab − 5/√38 Fac − 2/√13 Fde + Rx = 0

Rx = 2/√13 Fde

Rx = 11.33 N

You might be interested in
4. Why do you think people in south Louisiana specialize in seafood?
lbvjy [14]

Answer:

gang

Explanation:

yupppp

7 0
3 years ago
The sine ratio is the ratio formed by the hypotenuse over the side opposite the acute angle. True False
Paha777 [63]

Answer:False

Explanation:

The given statement is false

because the sine ratio is the ratio formed by the side opposite the acute angle to the hypotenuse

\sin (acute\ angle)=\frac{Perpendicular}{hypotenuse}  

4 0
3 years ago
The clownfish is classified as an omnivore because it eats
vodka [1.7K]
Because it eats plants and animals. 
3 0
3 years ago
Why are moving iron instrument are of repulsion type
never [62]

Answer:

he spring provides the controlling torque. The air friction induces the damping torque, which opposes the movement of the coil. The repulsion type instrument is a non-polarized instrument, i.e., free from the direction of current passes through it. Thus, it is used for both AC and DC

5 0
4 years ago
In our first example we will consider a very simple application of Newton’s second law. A worker with spikes on his shoes pulls
sweet-ann [11.9K]

Answer:

Acceleration=0.5m/s^2

Speed=0.67 m/s

Explanation:

We are given that

Horizontal force=F=20 N

Mass of box=m=40 kg

We know that

Acceleration=a=\frac{F}{m}

Using the formula

Acceleration of box=\frac{20}{40}=0.5m/s^2

The acceleration of the box=0.5m/s^2

Initial velocity=u=0

Force=F=30 N

Distance=s=0.3 m

a=\frac{30}{40}=\frac{3}{4} ms^{-2}

v^2-u^2=2as

Substitute the values

v^2-0=2\times \frac{3}{4}\times 0.3=0.45

v^2=0.45

v=\sqrt{0.45}=0.67m/s

Hence, the speed of the box after it has  been pulled a distance of 0.3 m=0.67 m/s

4 0
3 years ago
Other questions:
  • To calculate the ideal mechanical advantage of a lever divide the input arm by the
    14·1 answer
  • Constructive interference will cause two sound waves to cancel each other out resulting in silence
    6·1 answer
  • Starting at point 0, you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees. What is your heigh
    14·1 answer
  • I really need some help!!!
    15·2 answers
  • The human ear is most sensitive to the sounds in what range?
    14·1 answer
  • Flying against the jetstream, a jet travels 6060 mi in 6 hours. Flying with the jetstream, the same jet travels 10,640 mi in 8 h
    5·1 answer
  • What includes the hippocampus, amygdala and hypothalamus?
    12·2 answers
  • A marching band consists of rows of musicians walking in straight, even lines. When a marching band performs in an event, such a
    9·1 answer
  • Does specific heat of a substance depend on its temperature?​
    11·1 answer
  • Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How is the motion o
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!