Answer:
55.80s
Explanation:
Power is calculated using the expression
Power = Work done/Time
Workdone= Force ×distance
Workdone = 794×22
Work done = 17468Joules
From the power formula
Time = Workdone/Power
Time = 17468/313
Time = 55.80seconds
The elevator takes 55.80seconds to life the Taylor
The frequency of note C3 is 131
.
<u>Explanation:</u>
Frequency is the measure of repetition of same thing a certain number of times. So frequency is inversely proportional to the wavelength. As wavelength is distance between two successive crests or troughs in a sound wave.
And frequency is the completion of number of cycles in a given time in sound waves. The frequency and wavelength are inversely proportional to each other with velocity of sound being the proportionality constant.
Thus, here the speed of sound is given as 343 m/s, the wavelength of the note is also given as 2.62 m, then frequency will be as follows:

Thus,

So the frequency of note C3 is 131
.
Answer:
The gauge pressure in Pascals inside a honey droplet is 416 Pa
Explanation:
Given;
diameter of the honey droplet, D = 0.1 cm
radius of the honey droplet, R = 0.05 cm = 0.0005 m
surface tension of honey, γ = 0.052 N/m
Apply Laplace's law for a spherical membrane with two surfaces
Gauge pressure = P₁ - P₀ = 2 (2γ / r)
Where;
P₀ is the atmospheric pressure
Gauge pressure = 4γ / r
Gauge pressure = 4 (0.052) / (0.0005)
Gauge pressure = 416 Pa
Therefore, the gauge pressure in Pascals inside a honey droplet is 416 Pa
50% of the moon is always illuminated, however during it's quarter phase means that we only see a quarter of what's really lit up. So it LOOKS like the moon is only 25% lit and 75% dark, it's truly 50/50. We only see that 25% since we can see it from one angle.
KE=1/2mv^2 - equation for kinetic energy
KE=(1/2)(0.12 kg)((7.8 m/s)^2 - plug it into the formula
KE=(0.06 kg)(60.84 m/s) - multiply 1/2 to the mass and square the speed
KE= 3.7 J - answer
Hope this helps