Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.
Answer:
- The procedure is: solve the quadratic equation for
.
Explanation:
This question assumes uniformly accelerated motion, for which the distance d a particle travels in time t is given by the general equation:
That is a quadratic equation, where the independent variable is the time
.
Thus, the procedure that will find the time t at which the distance value is known to be D is to solve the quadratic equation for
.
To solve it you start by changing the equation to the general form of the quadratic equations, rearranging the terms:
Some times that equation may be solved by factoring, and always it can be solved by using the quadratic formula:
Where:

That may have two solutions. Some times one of the solution makes no physical sense (for example time cannot be negative) but others the two solutions are valid.
Average velocity is displacement divided by time elapsed; Δv/Δt
You will need to use the information in the table you are given. Subtract: (final velocity - initial velocity) and divide by (final time - initial time).