Answer:
Purify drinking water of unwanted
<em>Hope this helps! :D</em>
Answer:
Only the number of neutrons change.
The aim is to use less space while demonstrating the distribution of electrons in shells
If you want to depict how an atom's electrons are scattered across its subshells, an orbital notation is more suited.
This is due to the fact that some atoms have unique electronic configurations that are not readily apparent from textual configurations.
<h3>How does electron configuration work?</h3>
The placement of electrons in orbitals surrounding an atomic nucleus is known as electronic configuration, also known as electronic structure or electron configuration.
<h3>What sort of electron arrangement would that look like?</h3>
- For instance: You can see that oxygen contains 8 electrons on the periodic table.
- These 8 electrons would fill in the following order: 1s, 2s, and finally 2p, according to the aforementioned fill order. O 1s22s22p4 would be oxygen's electron configuration.
learn more about electronic configuration here
brainly.com/question/26084288
#SPJ4
Answer:

Explanation:
Because 3.005 grams of potassium lactate is added to 100. mL of solution, its concentration is:
![\displaystyle \begin{aligned} \left[ \text{KC$_3$H_$_5$O$_3$}\right] & = \frac{3.005\text{ g KC$_3$H_$_5$O$_3$}}{100.\text{ mL}} \cdot \frac{1\text{ mol KC$_3$H_$_5$O$_3$}}{128.17 \text{ g KC$_3$H_$_5$O$_3$}} \cdot \frac{1000\text{ mL}}{1\text{ L}} \\ \\ &= 0.234\text{ M}\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%5Cleft%5B%20%5Ctext%7BKC%24_3%24H_%24_5%24O%24_3%24%7D%5Cright%5D%20%20%26%20%3D%20%5Cfrac%7B3.005%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B100.%5Ctext%7B%20mL%7D%7D%20%5Ccdot%20%5Cfrac%7B1%5Ctext%7B%20mol%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%7B128.17%20%5Ctext%7B%20g%20KC%24_3%24H_%24_5%24O%24_3%24%7D%7D%20%5Ccdot%20%5Cfrac%7B1000%5Ctext%7B%20mL%7D%7D%7B1%5Ctext%7B%20L%7D%7D%20%5C%5C%20%5C%5C%20%26%3D%200.234%5Ctext%7B%20M%7D%5Cend%7Baligned%7D)
By solubility rules, potassium is completely soluble, so the compound will dissociate completely into potassium and lactate ions. Therefore, [KC₃H₅O₃] = [C₃H₅O₃⁺]. Note that lactate is the conjugate base of lactic acid.
Recall the Henderson-Hasselbalch equation:
![\displaystyle \begin{aligned}\text{pH} = \text{p}K_a + \log \frac{\left[\text{Base}\right]}{\left[\text{Acid}\right]} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%5Ctext%7BpH%7D%20%3D%20%5Ctext%7Bp%7DK_a%20%2B%20%5Clog%20%5Cfrac%7B%5Cleft%5B%5Ctext%7BBase%7D%5Cright%5D%7D%7B%5Cleft%5B%5Ctext%7BAcid%7D%5Cright%5D%7D%20%5Cend%7Baligned%7D)
[Base] = 0.234 M and [Acid] = 0.500 M. We are given that the resulting pH is 3.526. Substitute and solve for p<em>Kₐ</em>:

In conclusion, the p<em>Kₐ </em>value of lactic acid is about 3.856.