Among the given choices, the ionic compound is D. Magnesium Chloride (<span>MgCl2</span>) where magnesium has a +2 charge while chloride has a -1 charge. Ionic compounds are chemical compounds comprising of ions held together by electrostatic forces named as ionic bonding.
The kelvin temperature/scale i think
Answer:
Motors commonly contain a "commutator" which allows a magnetic field due to a loop of wire to always be in a say "clockwise or counterclockwise" direction even tho the loop of wire is rotating.
That means that magnetic field due to the surrounding magnets is always in the same direction, but the magnetic field due to the rotating loop of wire is continually changing so that it will always oppose the surrounding field which remains in a constant direction.
This is most easily seen in a "DC - direct current motor".
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
We can solve for the acceleration by using a kinematic equation. First we should identify what we know so we can choose the correct equation.
We are given an original velocity of 24 m/s, a final velocity of 0 m/s, and a time of 6 s. We and looking for acceleration (a) in m/s^2.
The following equation has everything we need:

So plug in the known values and solve for a:
0 = 24 + 6a
-24 = 6a
a = -4 m/s^2