Answer:
Eh = 21 [J]
Removed as heat.
Explanation:
This is a case of energy conservation, we have to take into account the energies that go in and out of the system. In this case, 135 [J] of energy are entered in the form of work of the compressor to the chamber where the refrigerant is compressed, now of these 135 [J] 114 [J] were used as internal energy, this internal energy is used to increase the pressure and temperature of the refrigerant.
In this way the rest of the energy of the 135 [J] was lost in the form of heat to determine this loss of energy, we simply perform the arithmetic subtraction.
Eh = 135 - 114 = 21 [J]
Eh = 21 [J]
Answer:
The horizontal speed of a projectile is constant for the duration of its flight. This is because, once launched, there are no horizontal forces acting on the projectile (air resistance is usually ignored because it is very small) so horizontally the projectile will travel at a constant speed. For any calculations involving the projectile's horizontal motion, we use
distance=speed×time
d=vt
Answer:
the maximum mass that can hang without sinking is 2.93 kg
Explanation:
Given: details:
sphere diameter d = 20 cm
so, radius r = 10 cm = 0.10 m
density of the Styrofoam sphere D = 300 kg/m3
sphere volume 

=4.18*10^{-3} m^3
we know that

mass M = Density * Volume
= (300)(4.18*10^{-3} m3)
=1.25 kg
mass of the water displace = volume *density of water
= 4.18*10^{-3} m3 * 1000
= 4.18 kg
The difference between the mass of water and mass of styrofoam is the amount of mass that the sphere can support
=4.18 kg -1.25 kg
= 2.93 kg