1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harkovskaia [24]
3 years ago
15

The Molybdenum with an atomic radius 0.1363 nm and atomic weight 95.95 has a BCC unit cell structure. Calculate its theoretical

density (g/cm^3).
Engineering
1 answer:
Nookie1986 [14]3 years ago
5 0

Solution:

Given :

atomic radius, r = 0.1363nm = 0.1363×10⁻⁹m

atomic wieght, M = 95.96

Cell structure is BCC (Body Centred Cubic)

For BCC, we know that no. of atoms per unit cell, z = 2

and atomic radius, r =\frac{a\sqrt{3} }{4}

so, a = \frac{4r}{\sqrt{3}}

m = mass of each atom in a unit cell

mass of an atom = \frac{M}{N_{A} },

where, N_{A} is Avagadro Number = 6.02×10^{23}

volume of unit cell = a^{3}

density, ρ = \frac{mass of unit cell}{volume of unit cell}

density, ρ = \frac{z\times M}{a^{3}\times N_{A}}

ρ = \frac{2\times 95.95}{(\frac{4\times 0.1363\times 10^{-9}}{\sqrt{3}})^{3}\times (6.23\times 10^{23})}

ρ = 10.215gm/cm^{3}

You might be interested in
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
- Viscoelastic stress relaxation
My name is Ann [436]

Explanation:

The correct answers to the fill in the blanks would be;

1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).

2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.

The polymer whose properties have been mentioned above is commonly known as Kevlar.

It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.

5 0
3 years ago
Controlling your vehicle
Ratling [72]

Answer:

5. D

6. c

7. d

Explanation:

3 0
3 years ago
A shunt regulator utilizing a zener diode with an incremental resistance of 8 ohm is fed through an 82-Ohm resistor. If the raw
spayn [35]

Answer:

\triangle V_0=0.08V

Explanation:

From the question we are told that:

Incremental resistance  R=8ohms

Resistor Feed R_f=82ohms

Supply Change \triangle V=1

Generally the equation for  voltage rate of change is mathematically given by

 \frac{dV_0}{dV}=\frca{R}{R_1r_3}

Therefore

 \triangle V_0=\triangle V*\frac{R}{R_fR}

 \triangle V_0=1*\frac{8}{8*82}

 \triangle V_0=0.08V

7 0
3 years ago
Let's model this housing price data! Before we can do this, however, we need to split the data into training and test sets. Reme
Lilit [14]

The program reads in a dataset into a pandas dataframe, and uses the train_test_split function in the sklearn library to split the data into <em>training and test sets</em>. The code goes thus :

import pandas as pd

<em>#import</em><em> </em><em>the</em><em> </em><em>pandas</em><em> </em><em>dataframe</em><em> </em><em>and</em><em> </em><em>alias</em><em> </em><em>it</em><em> </em><em>as</em><em> </em><em>pd</em>

from sklearn.model_selection import train_test_split

<em>#import</em><em> </em><em>the</em><em> </em><em>train_test_split</em><em> </em><em>function</em><em> </em>

housing_df = pd.read_csv('housing price.csv')

<em>#read</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>housing</em><em> </em><em>data</em><em> </em>

features_df = df.iloc[:,1:]

<em>#seperate</em><em> </em><em>the</em><em> </em><em>features</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>label</em><em> </em><em>;</em>

target_df = df.iloc[:,0]

<em>#put</em><em> </em><em>the</em><em> </em><em>label</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>seperate</em><em> </em><em>dataframe</em><em> </em><em>as</em><em> </em><em>well</em><em>.</em><em> </em>

X_train, X_test, Y_train, Y_test = train_test_split(features_df, target_df, test_size = 0.1, random_state = 1)

<em>#uses</em><em> </em><em>tuple</em><em> </em><em>unpacking</em><em> </em><em>to</em><em> </em><em>randomly</em><em> </em><em>assign</em><em> </em><em>the</em><em> </em><em>data</em><em> </em><em>each</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>4</em><em> </em><em>variables</em><em>.</em><em> </em>

<em>#</em><em>Test</em><em> </em><em>size</em><em> </em><em>is</em><em> </em><em>test</em><em> </em><em>percent</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>entire</em><em> </em><em>dataset</em><em> </em>

Learn more :brainly.com/question/4257657?referrer=searchResults

3 0
2 years ago
Other questions:
  • A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
    6·1 answer
  • (TCO 4) A system samples a sinusoid of frequency 190 Hz at a rate of 120 Hz and writes the sampled signal to its output without
    12·1 answer
  • Balanced forces will result in which of the following
    9·1 answer
  • When must an Assured Equipment Grounding Conductor Program (AEGCP) be in place?
    10·1 answer
  • Nitrogen gas is compressed at steady state from a pressure of 14.2 psi and a temperature 60o F to a pressure of 120 psi and a te
    7·1 answer
  • I need help asapppp!!!!!
    7·1 answer
  • Question
    8·1 answer
  • Technician A says that acid core solder should be used whenever aluminum wires are to be soldered.
    14·1 answer
  • For some metal alloy, the following engineering stresses produce the corresponding engineering plastic strains prior to necking.
    8·1 answer
  • What is the difference between absorbed wavelengths and reflected wavelengths?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!