What do y’all do when ya girl go eat lunch and eat it and eat
Complete Question
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
The elongation is 
Explanation:
In order to gain a good understanding of this solution let define some terms
True Stress
A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as
.
True Strain
A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as
.
The mathematical relation between stress to strain on the plastic region of deformation is

Where K is a constant
n is known as the strain hardening exponent
This constant K can be obtained as follows

No substituting
from the question we have


Making
the subject from the equation above




From the definition we mentioned instantaneous length and this can be obtained mathematically as follows

Where
is the instantaneous length
is the original length



We can also obtain the elongated length mathematically as follows



Answer:
= -0.303 KW
Explanation:
This is the case of unsteady flow process because properties are changing with time.
From first law of thermodynamics for unsteady flow process

Given that tank is insulated so
and no mass is leaving so

Mass conservation 
is the initial and final mass in the system respectively.
Initially tank is evacuated so 
We know that for air
,

So now putting values

= -0.303 KW
Answer:
The exit temperature is 293.74 K.
Explanation:
Given that
At inlet condition(1)
P =80 KPa
V=150 m/s
T=10 C
Exit area is 5 times the inlet area
Now

If consider that density of air is not changing from inlet to exit then by using continuity equation

So 
m/s
Now from first law for open system

Here Q=0 and w=0

When air is treating as ideal gas

Noe by putting the values



So the exit temperature is 293.74 K.
Answer:
Steps should you take to rate this result are
-
Check the pin location.
-
Check the official website for the address
.
-
Check if there are closer results that we are not returning.