1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
2 years ago
8

The iron-blade plow allowed humans to increase food production during what age?

Engineering
1 answer:
lilavasa [31]2 years ago
4 0

Answer:

The Iron Age

Explanation:

You might be interested in
What type of companies would employ in mechanics engineering​
Alex73 [517]
What do y’all do when ya girl go eat lunch and eat it and eat
3 0
3 years ago
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
saveliy_v [14]

Complete Question

For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.

Answer:

The elongation is =21.29mm

Explanation:

In order to gain a good understanding of this solution let define some terms

True Stress

       A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as \sigma_T.

True Strain

     A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as \epsilon_T.

The mathematical relation between stress to strain on the plastic region of deformation is

              \sigma _T =K\epsilon^n_T

Where K is a constant

          n is known as the strain hardening exponent

           This constant K can be obtained as follows

                        K = \frac{\sigma_T}{(\epsilon_T)^n}

No substituting  345MPa \ for  \ \sigma_T, \ 0.02 \ for \ \epsilon_T , \ and  \ 0.22 \ for  \ n from the question we have

                     K = \frac{345}{(0.02)^{0.22}}

                          = 815.82MPa

Making \epsilon_T the subject from the equation above

              \epsilon_T = (\frac{\sigma_T}{K} )^{\frac{1}{n} }

Substituting \ 411MPa \ for \ \sigma_T \ 815.82MPa \ for \ K  \ and  \  0.22 \ for \ n

       \epsilon_T = (\frac{411MPa}{815.82MPa} )^{\frac{1}{0.22} }

            =0.0443

       

From the definition we mentioned instantaneous length and this can be  obtained mathematically as follows

           l_i = l_o e^{\epsilon_T}

Where

       l_i is the instantaneous length

      l_o is the original length

Substituting  \ 470mm \ for \ l_o \ and \ 0.0443 \ for  \ \epsilon_T

             l_i = 470 * e^{0.0443}

                =491.28mm

We can also obtain the elongated length mathematically as follows

            Elongated \ Length =l_i - l_o

Substituting \ 470mm \ for l_o and \ 491.28 \ for \ l_i

          Elongated \ Length = 491.28 - 470

                                       =21.29mm

4 0
3 years ago
A rigid, well-insulated tank of volume 0.9 m is initially evacuated. At time t = 0, air from the surroundings at 1 bar, 27°C beg
Eva8 [605]

Answer:

\dot{w}= -0.303 KW

Explanation:

This is the case of unsteady flow process because properties are changing with time.

From first law of thermodynamics for unsteady flow process

\dfrac{dU}{dt}=\dot{m_i}h_i+\dot{Q}-\dot{m_e}h_i+\dot{w}

Given that tank is insulated so\dot{Q}=0 and no mass is leaving so

\dot{m_e}=0

\int dU=\int \dot{m_i}h_i\ dt-\int \dot{w}\ dt

m_2u_2-m_1u_1=(m_2-m_1)h_i- \dot{w}\Delta t

Mass conservation m_2-m_1=m_e-m_i

m_1,m_2 is the initial and final mass in the system respectively.

Initially tank is evacuated so m_1=0

We know that for air u=C_vT ,h=C_p T,P_2v_2=m_2RT_2

m_2=0.42 kg

So now putting values

0.42 \times 0.71 \times 730=0.42\times 1.005\times 300- \dot{w} \times 300

\dot{w}= -0.303 KW

3 0
3 years ago
Air at 80 kPa and 10°C enters an adiabatic diffuser steadily with a velocity of 150 m/s and leaves with a low velocity at a pre
il63 [147K]

Answer:

The exit temperature is 293.74 K.

Explanation:

Given that

At inlet condition(1)

P =80 KPa

V=150 m/s

T=10 C

Exit area is 5 times the inlet area

Now

A_2=5A_1

If consider that density of air is not changing from inlet to exit then by using continuity equation

A_1V_1=A_2V_2

So   A_1\times 150=5A_1V_2

V_2=30m/s

Now from first law for open system

h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w

Here Q=0 and w=0

h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}

When air is treating as ideal gas  

h=C_pT

Noe by putting the values

h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}

1.005\times 283+\dfrac{150^2}{2000}=1.005\times T_2+\dfrac{30^2}{2000}

T_2=293.74K

So the exit temperature is 293.74 K.

7 0
3 years ago
User Location: Inside Viewport Viewport Location: Fresh Viewport in downtown San Fransisco, California Query: [Burger King] Resu
8_murik_8 [283]

Answer:

Steps should you take to rate this result are

  • Check the pin location.
  • Check the official website for the address .
  • Check if there are closer results that we are not returning.
4 0
3 years ago
Other questions:
  • A rigid tank with a volume of 4 m^3 contains argon at 500 kPa and 30 deg C. It is connected to a piston cylinder (initially empt
    14·1 answer
  • What is the air change rate (ACH) for a 100 ft^2 (9.3 m^2) space with a 10 ft (3.0 m) ceiling and an airflow rate of 200 cfm (95
    12·1 answer
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • A stainless-steel specimen from the same material characterized up above, was formed into a rectangular cross-section of dimensi
    9·1 answer
  • What's a disadvantage of highest MERV-rated filters?
    10·2 answers
  • Write a program that asks the user to input a vector of integers of arbitrary length. Then, using a for-end loop the program exa
    13·1 answer
  • An air standard cycle with constant specific heats is executed in a closed system with 0.003 kg of air and consists of the follo
    15·1 answer
  • Steam at 1400 kPa and 350°C [state 1] enters a turbine through a pipe that is 8 cm in diameter, at a mass flow rate of 0.1 kg⋅s−
    15·1 answer
  • What are difference between conic sectional and solids?
    15·1 answer
  • Is santa real or nah is santa real or nah
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!