Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)

Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation:
Answer:
c
Explanation:
it's the only engineering career
Answer:
MRR = 1.984
Explanation:
Given that
Depth of cut ,d=0.105 in
Diameter D= 1 in
Speed V= 105 sfpm
feed f= 0.015 ipr
Now the metal removal rate given as
MRR= 12 f V d
d= depth of cut
V= Speed
f=Feed
MRR= Metal removal rate
By putting the values
MRR= 12 f V d
MRR = 12 x 0.015 x 105 x 0.105
MRR = 1.984
Therefore answer is -
1.944