Answer:
Option A
Explanation:
An intensive property is a bulk property, meaning that it is a local physical property of a system that does not depend on the system size or the amount of material in the system. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness of an object,specific heat, η.
Physical properties can be observed or measured without changing the composition of matter. Physical properties are used to observe and describe matter. Physical properties include: appearance, texture, color, odor, melting point, boiling point, density, solubility, polarity, specific heat and many others.
160.0g
Mass =volume x density = 200.0 mL x 0.8 g/mL= 160.0 g
The complete table is inserted.
A table is given,
Formulas used:
pH= -log(H⁺)
pOH= -log(OH⁻)
pH+ pOH=14
Calculations:
For A: (H⁺)=2×10⁻⁸M
Using the pH formula:
pH= -log(H⁺)=-log(2×10⁻⁸)=7.69
pOH=14 - 7.69=6.3
Calculating OH concentration,
pOH= -log(OH⁻)
6.3= -log(OH⁻)
(OH⁻)=5.011×10⁻⁷M
Hence, the nature of A is basic.
Similarily,
For B,
(OH⁻)=1×10⁻⁷
Using the pH formula:
pOH= -log(OH⁻)= -log(1×10⁻⁷)=7
pH=14-7=7
Calculating H concentration,
pH= -log(H⁺)
7= -log(H⁺)
(H⁺)=1×10⁻⁷M
Hence, the nature of B is neutral.
Similarily,
For C,
pH=12.3
Using the pH formula:
pOH=14-12.3=1.7
Calculating H concentration,
pH= -log(H⁺)
12.3= -log(H⁺)
(H⁺)=5.011×10⁻¹³M
Calculating OH concentration,
pOH= -log(OH⁻)
1.7= -log(OH⁻)
(OH⁻)=1.99×10⁻²M
Hence, the nature of C is Basic.
Similarily,
For D,
pOH=6.8
Using the pH formula:
pH=14-6.8=7.2
Calculating H concentration,
pH= -log(H⁺)
7.2= -log(H⁺)
(H⁺)=6.309×10⁻⁸M
Calculating OH concentration,
pOH= -log(OH⁻)
6.8= -log(OH⁻)
(OH⁻)=1.58×10⁻⁷M
Hence, the nature of D is basic.
Learn more about the acid and bases here:
brainly.com/question/16189013
#SPJ10
<h2><u>QUE</u><u>STION</u></h2>
It refers to a charged particle or atom.
<h2><u>CHOI</u><u>CES</u></h2>
<u>A.</u><u> </u><u>molecule</u>
B. bromine
C. potassium
D. sulfur
<h2><u>ANSWER</u></h2>
<h3><u>C</u><u>.</u><u> </u><u>pottasium</u></h3>
Answer:
(a) -0.00017 M/s;
(b) 0.00034 M/s
Explanation:
(a) Rate of a reaction is defined as change in molarity in a unit time, that is:

Given the following reaction:

We may write the rate expression in terms of reactants firstly. Since reactants are decreasing in molarity, we're adding a negative sign. Similarly, if we wish to look at the overall reaction rate, we need to divide by stoichiometric coefficients:
![r = -\frac{\Delta [N_2O_5]}{2 \Delta t}](https://tex.z-dn.net/?f=r%20%3D%20-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D)
Reaction rate is also equal to the rate of formation of products divided by their coefficients:
![r = \frac{\Delta [NO_2]}{4 \Delta t} = \frac{\Delta [O_2]}{\Delta t}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BO_2%5D%7D%7B%5CDelta%20t%7D)
Let's find the rate of disappearance of the reactant firstly. This would be found dividing the change in molarity by the change in time:

(b) Using the relationship derived previously, we know that:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
Rate of appearance of nitrogen dioxide is given by:
![r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=r_%7BNO_2%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
Which is obtained from the equation:
![-\frac{\Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{4 \Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B4%20%5CDelta%20t%7D)
If we multiply both sides by 4, that is:
![-\frac{4 \Delta [N_2O_5]}{2 \Delta t} = \frac{\Delta [NO_2]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B4%20%5CDelta%20%5BN_2O_5%5D%7D%7B2%20%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20%5BNO_2%5D%7D%7B%5CDelta%20t%7D)
This yields:
[tex]r_{NO_2} = \frac{\Delta [NO_2]}{\Delta t} = -2\frac{\Delta [N_2O_5]}{ \Delta t} = -2\cdot (-0.00017 M/s) = 0.00034 M/s[tex]