The mass of NaCl formed is 8.307 grams
<u><em> calculation</em></u>
step 1: write the equation for reaction
Na₂CO₃ + 2HCl → 2 NaCl +CO₂ +H₂O
Step 2: find the moles of Na₂CO₃
moles = mass/molar mass
The molar mass of Na₂CO₃ is = (23 x2) + 12 + ( 16 x3) = 106 g/mol
moles = 7.5 g/106 g/mol =0.071 moles
Step 3: use the mole ratio to determine the mole of NaCl
Na₂CO₃:NaCl is 1:2 therefore the moles of NaCl =0.07 x2 =0.142 moles
Step 4: calculate mass of NaCl
mass= moles x molar mass
the molar mass of NaCl= 23 +35.5 =58.5 g/mol
mass = 0.142 moles x 58.5 g/mol =8.307 grams
Answer:
I belive it's the black chair because they were asking which chair experienced the most force in the begining and the black chair had the most force given.
The much of the sample that would remain unchanged after 140 seconds is 2.813 g
Explanation
Half life is time taken for the quantity to reduce to half its original value.
if the half life for Scandium is 35 sec, then the number of half life in 140 seconds
=140 sec/ 35 s = 4 half life
Therefore 45 g after first half life = 45 x1/2 =22.5 g
22.5 g after second half life = 22.5 x 1/2 =11.25 g
11.25 g after third half life = 11.25 x 1/2 = 5.625 g
5.625 after fourth half life = 5.625 x 1/2 = 2.813
therefore 2.813 g of Scandium 47 remains unchanged.
Same things but with different numbers of neutrons in nuclei