Answer:
0.8214 m/s^2
Explanation:
Fnet= Fpushed - Ffriction
Fpushed = 12.7N Ffriction = 8.33N
Fnet = 12.7N - 8.33N = 4.37N
Fnet= mass(acceleration)
Fnet = 4.37N mass = 5.32 kg
4.37N = 5.32 kg(acceleration)
acceleration= 0.8214 m/s^2
Let V = the volume of the balloon
Force of gravity = V * ?hot * g downward
Buoyant force = V * ?cool * g upward
Net upward force F = V * ?cool * g - V * ?hot * g
F = V g (?cool - ?hot)
Mass of the balloon m = V ?hot
a = F/m = V g (?cool - ?hot)/(V ?hot)
a = g(?cool/?hot - 1)
a = 9.8(1.29/0.93 - 1)
a = 3.79 m/s^2
<span>Answer is 3.79 m/s^2</span>
To find the mass of the planet we will apply the relationship of the given circumference of the planet with the given data and thus find the radius of the planet. From the kinematic equations of motion we will find the gravitational acceleration of the planet, and under the description of this value by Newton's laws the mass of the planet, that is,
The circumference of the planet is,

Under the mathematical value the radius would be



Using second equation of motion

Replacing the values given,

Rearranging and solving for 'a' we have,

Using the value of acceleration due to gravity from Newton's law we have that

Here,
r = Radius of the planet
G = Gravitational Universal constant
M = Mass of the Planet


Therefore the mass of this planet is 
The hardness
nail or fingernail
Oxygon and Carbon are exchanged in the respiratory system hope this helps! :D