Answer:
Mass will be same on moon as on Earth but weight will be one-sixth of Earth.
Explanation:
Mass of a body doesn't depend on gravity. Mass is a constant quantity. So, mass on moon will be same as mass on Earth.
But, the weight of a body depends on gravity as weight is given as:

Therefore, if
is acceleration due to gravity on Earth, then weight on Earth is, 
Now, gravity on moon is one-sixth of Earth. So, 
Therefore, weight of the body on moon is, 
Therefore, a body has same mass both on moon and Earth but weight on moon is one-sixth of the weight on Earth.
Answer:
Explanation:
a) series resistors carry the same current
A = V/Re = 6/(16 + 6) = 0.2727272... ≈ 27 mA
b) V = V₀(R/Re) = 6(16/(16 + 6)) = 4.363636 ≈ 4.4 V
c) V = V₀(R/Re) = 6(6/(16 + 6)) = 1.636363 ≈ 1.6 V
or V = 6 - 4.4 = 1.6 V
Answer:
The net force is 15 newtons
The direction is to the right
Explanation:
Hope this helps
B) lever and pulley is the answer
A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!