Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
Answer:
b
Explanation:
imagine urself on an elevator dont you feel lighter
False. Radio waves<span> have much longer </span>wavelengths<span> and lower frequencies </span>than<span> </span><span>visible light waves</span>
In series with the circuit, so for it pass the current to be mensured.
Letter A
If you notice any mistake in my english, please let me know, because i am not native.