Answer:
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Here when car in front of us applied brakes then it is slowing down due to frictional force on it
So here we can say that friction force on the car front of our car is given as

So the acceleration of car due to friction is given as



now it is given that


so here we have


so the car will accelerate due to brakes by a = - 8.52 m/s^2
Seismic wave is the answer
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>