Answer:

Explanation:
The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

Where m is the mass, ζ is the damping constant, and k is the spring constant.
The spring constant k can be found by




The damping constant can be found by



Finally, the mass m can be found by



Where g is approximately 32 ft/s²

Therefore, the required differential equation is


The initial position is

The initial velocity is

Answer:
An object at rest will stay at rest and an object in motion will stay in motion unless it is acted upon by an unbalanced/external force.
<h2>
Power of cheetah is 5576.85 W = 7.48 hp</h2>
Explanation:
Power is the ratio of energy to time.
Here we need to consider kinetic energy,
Mass, m = 102 kg
Initial velocity = 0 m/s
Final velocity = 16.2 m/s
Time, t = 2.4 s
Initial kinetic energy = 0.5 x Mass x Initial velocity² = 0.5 x 102 x 0² = 0 J
Final kinetic energy = 0.5 x Mass x Final velocity² = 0.5 x 102 x 16.2² = 13384.44 J
Change in energy = Final kinetic energy - Initial kinetic energy
Change in energy = 13384.44 - 0
Change in energy = 13384.44 J
Power = 13384.44 ÷ 2.4 = 5576.85 W = 7.48 hp
Power of cheetah is 5576.85 W = 7.48 hp
Sorry to say but I know that t(e introduction is first and the coda is last