Answer:
The speed of the galaxy relative to the Earth is
.
Explanation:
We have,
(a) Wavelength emitted by light at distant galaxy is 434.1 nm. On earth, the wavelength of this light is measured to be 438.6 nm. It can be seen that the wavelength of light reduces as it reaches Earth. It is called Red shift. As per Doppler's effect, we can say that the galaxy is receding from the Earth.
(b) Let v is the speed of the galaxy relative to the Earth. It can be given by :

So, the speed of the galaxy relative to the Earth is
.
Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.
This led to Kepler's law of orbital motion.
First Law: Planetary orbits are elliptical with the sun at a focus.
Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.
Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.
It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.
The first thing you should know to solve this problem is the conversion of pounds to kilograms:
1lb = 0.45 Kg
We can solve this problem by a simple rule of three
1lb ---> 0.45Kg
125lb ---> x
Clearing x we have:
x = ((125) / (1)) * (0.45) = 56.25 Kg.
Answer
her mass expressed in kilograms is 56.25 Kg.
LiCl, because lithium (Li) has one positively charged ion (1+), and
chloride (Cl) has one negatively charged ion (1-), so they
cancel each other out.
A box is sliding up an incline that makes an angle of 14.0° with respect to the horizontal. the coefficient of kinetic friction between the box and the surface of the incline is 0.180. the initial speed of the box at the bottom of the incline is 2.20 m/s. how far does the box travel along the incline before coming to rest?