Answer:
Mass of the pull is 77 kg
Explanation:
Here we have for
Since the rope moves along with pulley, we have
For the first block we have
T₁ - m₁g = -m₁a = -m₁g/4
T₁ = 3/4(m₁g) = 323.4 N
Similarly, as the acceleration of the second block is the same as the first block but in opposite direction, we have
T₂ - m₂g = m₂a = m₂g/4
T₂ = 5/4(m₂g) = 134.75 N
T₂r - T₁r = I·∝ = 0.5·M·r²(-α/r)
∴ 

Mass of the pull = 77 kg.
When a swimmer pushes threw water to swim they are propelled forward because of the water resistance against the hand and feet.
Answer:
D air
Explanation:
it is not found on the periodic table
brainliest plsssssssssssssssss
D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m
Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)