Answer:
c
Explanation:
force is how hard it is pulled or pushed
Some are out but will be on Netflix June 17
Answer:
Second option 6.3 N at 162° counterclockwise from
F1->
Explanation:
Observe the attached image. We must calculate the sum of all the forces in the direction x and in the direction y and equal the sum of the forces to 0.
For the address x we have:

For the address and we have:

The forces
and
are known

We have 2 unknowns (
and b) and we have 2 equations.
Now we clear
from the second equation and introduce it into the first equation.

Then

Then we find the value of 

Finally the answer is 6.3 N at 162° counterclockwise from
F1->
Answer: B
adding force will add accesion
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1