T₁ = 27°C = 27 + 273 = 300K, V₁ = 6 L,
T₂ = 150°C = 150 + 273 = 423K, V₂ = ?,
By Charles' Law: V₁/T₁= V₂/T₂
6/300 = V₂/423
423*(6/300) = V₂
8.46 = V₂
Volume at 150°C =8.46 L.
Answer:
1034 yrs
Explanation:
The equation to use in this question is:
t = -2.303/k log (A/A₀) where
A= present number of disintegrations
A₀ = intial number of disintegrations
k = decay constant
The decay constant we will obtain it from the given hal-life:
k: 0.693/t₁/₂, t₁/₂ = half-life ⇒
k: 0.693 / 5730 y = 1.209 x 10⁻⁴ /y⁻¹
t = - 2.303 / 1.209 x 10⁻⁴ /y⁻¹ x log (13.1/15.3) = 1034 yrs
Answer:
Unlike alpha and beta particles, which have both energy and mass, gamma rays are pure energy. Gamma rays are similar to visible light, but have much higher energy. Gamma rays are often emitted along with alpha or beta particles during radioactive decay.
-Radiation basics.
Explanation:
No, because you are not changing the chemical make-up of the paper
molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly