1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Morgarella [4.7K]
3 years ago
13

A bolt is dropped from a bridge under construction, falling 96 m to the valley below the bridge. (a) How much time does it take

to pass through the last 11 % of its fall? What is its speed (b) when it begins that last 11 % of its fall and (c) just before it reaches the ground?
Physics
1 answer:
irakobra [83]3 years ago
6 0

Answer:

a)It takes the bolt 0.25 s to pass the last 11% of the fall.

b)When the bolt begins to fall the last 11% of the fall its velocity is -41.2 m/s.

c)The velocity of the bolt just before it reaches the ground is -43.6 m/s

Explanation:

Hi there!

a) Let´s calculate how much distance it is the last 11% of the fall:

96 m · 0.11 = 10.56 m

So, we have to find how much time it takes the bolt to pass from a height of 10.56 m to the ground.

First, let´s calculate how much time it takes the bolt to reach a height of 10.56 m. For that we can use this equation:

h = h0 + v0 · t + 1/2 · g · t²

Where:

h = height of the bolt at a time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity.

If we consider the ground as the origin of the frame of reference, then h0 = 96 m. Since the bolt is dropped, the initial velocity is zero (v0 = 0). Then, the equation gets reduce to this:

h = h0 + 1/2 · g · t²

We have to find at which time h = 10.56 m.

10.56 m = 96 m - 1/2 · 9.8 m/s² · t²

Solving for t:

√(-2 · (10.56 m - 96 m) / 9.8 m/s²) = t

t = 4.2 s

Now that we have the time at which the bolt is located at 10.56 m above the ground, we can calculate the velocity of the bolt at that time.

The equation of velocity (v) of the bolt is the following:

v = v0 + g · t

at t = 4.2 s.

v = 0 - 9.8 m/s² · 4.2 s

v = -41.2 m/s

<u>When the bolt begins to fall the last 11% of the fall its velocity is -41.2 m/s.</u>

Now, we can calculate how much time it takes to fall the last 10.56 m.

The initial velocity of the bolt will be the velocity at h = 10.56 m. The initial height will be 10.56 m.

h = h0 + v0 · t + 1/2 · g · t²

We have to find the time at which h = 0 (the bolt hits the ground)

0 = 10.56 m - 41.2 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 0.25 s (the other solution of the quadratic equation is negative and thus discarded).

<u>It takes the bolt 0.25 s to pass the last 11% of the fall.</u>

Now, let´s calculate the velocity of the bolt when it reaches the ground:

v = v0 + g · t

v = -41.2 m/s - 9.8 m/s² · 0.25 s

v = -43.6 m/s

<u>The velocity of the bolt just before it reaches the bolt is -43.6 m/s</u>

You might be interested in
Explain how streams can erode soil and transport materials?
vladimir1956 [14]
The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load. Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way. When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence. A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces. The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
8 0
3 years ago
An electric generator transforms mechanical energy into electrical energy. This process could be done by which of these?
Dimas [21]

Answer:

its d

Explanation:

6 0
3 years ago
Read 2 more answers
How many lines per mm are there in the diffraction grating if the second order principal maximum for a light of wavelength 536 n
grandymaker [24]

To solve this problem it is necessary to apply the concepts related to the principle of superposition and the equations of destructive and constructive interference.

Constructive interference can be defined as

dSin\theta = m\lambda

Where

m= Any integer which represent the number of repetition of spectrum

\lambda= Wavelength

d = Distance between the slits.

\theta= Angle between the difraccion paterns and the source of light

Re-arrange to find the distance between the slits we have,

d = \frac{m\lambda}{sin\theta }

d = \frac{2*536*10^{-9}}{sin(24)}

d = 2.63*10^{-6}m

Therefore the number of lines per millimeter would be given as

\frac{1}{d} = \frac{1}{2.63*10^{-6} }

\frac{1}{d} = 379418.5\frac{lines}{m}(\frac{10^{-3}m}{1 mm})

\frac{1}{d} = 379.4 lines/mm

Therefore the number of the lines from the grating to the center of the diffraction pattern are 380lines per mm

6 0
3 years ago
Plants absorb water from the soil through their roots. _______ of this water is used for photosynthesis; _______ of this water e
netineya [11]
THE CORRECT CHOICE IS B
3 0
3 years ago
Read 2 more answers
The length of a 100 mm bar of metal increases by 0.3 mm when subjected to a temperature rise of 100°C. The coefficient of linear
Juli2301 [7.4K]

Answer:

α = 3×10^-5 K^-1

Explanation:

let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.

then, the coefficient of linear expansion is given by:

α = ΔL/(ΔT×L)

   = (0.3×10^-3)/(100)(100×10^-3)

   = 3×10^-5 K^-1

Therefore, the coefficient of linear expansion is 3×10^-5 K^-1

5 0
3 years ago
Other questions:
  • What are fossil fuels, as organic compounds, made from?
    10·2 answers
  • WILL GIVE BRAINLIEST PLEASE I NEED THIS! A 100-kg projectile crashes through a castle wall with a kinetic energy of 266.45 kJ. W
    10·1 answer
  • Figure 1.18 (Chapter 1) shows the Hoover Dam Bridge over
    8·1 answer
  • Consider a keen little boy who is having a wagon race with a friend. He starts from rest and
    11·1 answer
  • The passengers in a roller coaster car feel 50% heavier than their true weight as the car goes through a dip with a 10 m radius
    6·1 answer
  • Predict which current will be greater, the current passing through an electric razor or electric iron.?
    14·2 answers
  • How long will it take for a sound impulse to travel through a copper rod 25 kilometers long?
    7·1 answer
  • Draw a standard VOLLEYBALL COURT to show the correct player’s positioning and rotation by writing the numbers of each player.
    9·1 answer
  • What can be used to plot the magnetic field around a bar magnet?
    11·1 answer
  • E-mail is usually a poor choice for the distribution of sensitive electronic files because __________. A. Paper copies seem more
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!