1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
10

What do work and energy have in common

Physics
1 answer:
spayn [35]3 years ago
3 0

Energy and Work have the same unit of measurement which is Joules in SI units.

Explanation:

  • A Joule of Work is said to be done on an object when energy is transferred to that particular object.
  • If two objects are involved, when one object transfers energy onto the second, a joule of work is said to be done by the first object.  
  • Work is also the application of force on an object over a distance. So Work = Force × Displacement
  • Energy is neither created nor destroyed. It is in 2 forms - kinetic and potential.
  • Kinetic energy is defined as the energy of a moving object while potential energy is known as the energy that is stored within an object.
  • Kinetic Energy = 1/2 × mass × (velocity)²
  • Potential Energy = mass × acceleration due to gravity × height
  • Both energy and work are measured in Joules.
You might be interested in
Which calculates the intensity of an electric field at a point where a 0.50 C charge experiences a force of 20. N?
tester [92]

Answer: 40\ N/C

Explanation:

Given

Magnitude of charge is q=0.5\ C

Force experienced is F=20\ N

Electric field intensity is the electrostatic force per unit charge

\therefore E=\dfrac{F}{q}\\\\\Rightarrow E=\dfrac{20}{0.50}\\\\\Rightarrow E=40\ N/C

Thus, the electric field intensity is 40\ N/C

6 0
3 years ago
Help with the number 2 question​
MArishka [77]

Answer:

It is frequently stated that the value of the acceleration due to gravity at the pole is larger than at the equator because the poles are closer to the center of the earth due to the earth's oblateness. ... The measured value is larger because the earth's density is not uniform but increases toward the center.

6 0
3 years ago
A puck of mass 0.110 kg slides across ice in the positive x-direction with a kinetic friction coefficient between the ice and pu
lara [203]

Answer:

a) Ffr = -0.18 N

b) a= -1.64 m/s2

c) t = 9.2 s

d) x = 68.7 m.

e) W= -12.4 J

f) Pavg = -1.35 W

g) Pinst = -0.72 W

Explanation:

a)

  • While the puck slides across ice, the only force acting in the horizontal direction, is the force of kinetic friction.
  • This force is the horizontal component of the contact force, and opposes to the relative movement between the puck and the ice surface, causing it to slow down until it finally comes to a complete stop.
  • So, this force can be written as follows, indicating with the (-) that opposes to the movement of the object.

       F_{frk} = -\mu_{k} * F_{n} (1)

       where μk is the kinetic friction coefficient, and Fn is the normal force.

  • Since the puck is not accelerated in the vertical direction, and there are only two forces acting on it vertically (the normal force Fn, upward, and  the weight Fg, downward), we conclude that both must be equal and opposite each other:

      F_{n} = F_{g} = m*g (2)

  • We can replace (2) in (1), and substituting μk by its value, to find the value of the kinetic friction force, as follows:

       F_{frk} = -\mu_{k} * F_{n} = -0.167*9.8m/s2*0.11kg = -0.18 N (3)

b)

  • According Newton's 2nd Law, the net force acting on the object is equal to its mass times the acceleration.
  • In this case, this net force is the friction force which we have already found in a).
  • Since mass is an scalar, the acceleration must have the same direction as the force, i.e., points to the left.
  • We can write the expression for a as follows:

        a= \frac{F_{frk}}{m} = \frac{-0.18N}{0.11kg} = -1.64 m/s2  (4)

c)

  • Applying the definition of acceleration, choosing t₀ =0, and that the puck comes to rest, so vf=0, we can write the following equation:

        a = \frac{-v_{o} }{t} (5)

  • Replacing by the values of v₀ = 15 m/s, and a = -1.64 m/s2, we can solve for t, as follows:

       t =\frac{-15m/s}{-1.64m/s2} = 9.2 s (6)

d)

  • From (1), (2), and (3) we can conclude that the friction force is constant, which it means that the acceleration is constant too.
  • So, we can use the following kinematic equation in order to find the displacement before coming to rest:

        v_{f} ^{2} - v_{o} ^{2} = 2*a*\Delta x  (7)

  • Since the puck comes to a stop, vf =0.
  • Replacing in (7) the values of v₀ = 15 m/s, and a= -1.64 m/s2, we can solve for the displacement Δx, as follows:

       \Delta x  = \frac{-v_{o}^{2}}{2*a} =\frac{-(15.0m/s)^{2}}{2*(-1.64m/s2} = 68.7 m  (8)

e)

  • The total work done by the friction force on the object , can be obtained in several ways.
  • One of them is just applying the work-energy theorem, that says that the net work done on the object is equal to the change in the kinetic energy of the same object.
  • Since the final kinetic energy is zero (the object stops), the total work done by friction (which is the only force that does work, because the weight and the normal force are perpendicular to the displacement) can be written as follows:

W_{frk} = \Delta K = K_{f} -K_{o} = 0 -\frac{1}{2}*m*v_{o}^{2} =-0.5*0.11*(15.0m/s)^{2}   = -12.4 J  (9)

f)

  • By definition, the average power is the rate of change of the energy delivered to an object (in J) with respect to time.
  • P_{Avg} = \frac{\Delta E}{\Delta t}  (10)
  • If we choose t₀=0, replacing (9) as ΔE, and (6) as Δt, and we can write the following equation:

       P_{Avg} = \frac{\Delta E}{\Delta t} = \frac{-12.4J}{9.2s} = -1.35 W (11)

g)

  • The instantaneous power can be deducted from (10) as W= F*Δx, so we can write P= F*(Δx/Δt) = F*v (dot product)
  • Since F is constant, the instantaneous power when v=4.0 m/s, can be written as follows:

       P_{inst} =- 0.18 N * 4.0m/s = -0.72 W (12)

7 0
3 years ago
A 25.0-kg child is standing at the edge of a horizontal merry-go-round with a radius of 2.40 m and a moment of inertia of 356 kg
motikmotik

Answer:

\omega_{f}=1.634\ rad/s  

Explanation:

given,  

diameter of merry - go - round = 2.40 m  

moment of inertia = I = 356 kg∙m²

speed of the merry- go-round = 1.80 rad/s

mass of child = 25 kg  

initial angular momentum of the system  

L_i = I\omega_i  

L_i =356\times 1.80  

L_i =640.8\ kg.m^2/s  

final angular momentum of the system  

L_f = (I_{disk}+mR^2)\omega_{f}  

L_f = (356 + 25\times 1.2^2)\omega_{f}  

L_f= (392)\omega_{f}  

from conservation of angular momentum  

L_i = L_f  

640.8= (392)\omega_{f}  

\omega_{f}=1.634\ rad/s  

8 0
2 years ago
Read 2 more answers
A wire 54.6 cm long carries a 0.480 A current in the positive direction of an x axis through a magnetic field with an x componen
Sav [38]

Answer:

wire 66.0 cm long carries a 0.750 A current in the positive direction of an x axis through a magnetic field $$\vec { B } = ( 3.00 m T ) \hat { j } ...

Top answer · 1 vote

8 0
2 years ago
Other questions:
  • The region around an electric charge that will apply force to other charges
    7·1 answer
  • Dos cargas iguales de 10^-7C estan separadas por una distancia de 2m. calcule la fuerza con que se repelen
    10·1 answer
  • A boat floats south on the Amazon River at a speed of 6 m/s. The boat and
    7·1 answer
  • A student throws a baseball at a large gong 52 m away and hears the sound of the gong 1.73333 s later. The speed of sound in air
    10·1 answer
  • A scientist has two radioactive substances. One emits beta particles, and the other emits alpha particles. He thinks that since
    10·2 answers
  • three small balls each of mass 13.3g are suspended separately from a common point by silk threads, each 1.17m long. The balls ar
    10·1 answer
  • 8. If Bulb 8 burns out, how will the remaining bulbs be affected?
    15·1 answer
  • On what factors do pressure depend ​
    9·1 answer
  • What is the 3 word definition for momentum?
    10·2 answers
  • _____ is a device
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!