Answer:
0.00417 kW/K or 4.17 W/K
Second law is satisfied.
Explanation:
Parameters given:
Rate of heat transfer, Q = 2kW
Temperature of hot reservoir, Th = 800K
Temperature of cold reservoir, Tc = 300K
The rate of entropy change is given as:
ΔS = Q * [(1/Tc) - (1/Th)]
ΔS = 2 * (1/300 - 1/800)
ΔS = 2 * 0.002085
ΔS = 0.00417 kW/K or 4.17 W/K
Since ΔS is greater than 0, te the second law of thermodynamics is satisfied.
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
Answer:
(a) Current flowing through truck battery is 180 A
(b) Time taken in calculator is 333.33 s
Explanation:
(a) Given:
The charge on the truck battery,q = 720 C
Time, t = 4.00 s
Consider I be the current flowing through truck battery.
The relation between current, charge and time is:
I = q/t
Substitute the suitable values in the above equation.

I = 180 A
(b) Given:
The charge on the calculator,q = 7.00 C
The current flowing through calculator, I = 0.3 mA = 0.3 x 10⁻³ A
Consider t be the time.
The relation between current, charge and time is:
t = q/I
Substitute the suitable values in the above equation.

I = 333.33 s
Answer:
option A
Explanation:
given,
frequency is increased by 20%
we know,
...........(1)
where
x_n is the perpendicular distance between the point the interference pattern is obtained,
L is the distance between the center of the two point sources
and λ is the wavelength of light.
If the frequency is increased by 20%, then the number of nodal lines is increased by 20%.
From equation (1),we observe that the frequency is directly proportional to the number of nodal lines.
Hence, the correct answer is option A