In ur explanation make sure to use the terms
To solve this problem it is necessary to apply the concepts related to the magnetic field.
According to the information, the magnetic field INSIDE the plates is,

Where,
Permeability constant
Electromotive force
r = Radius
From this deduction we can verify that the distance is proportional to the field

Then the distance relationship would be given by




On the outside, however, it is defined by

Here the magnetic field is inversely proportional to the distance, that is

Then,




Answer:
Explain why it is not advisable to sterilise a clinical thermometer on boiling water at normal atmospheric temperature. A clinical thermometer has small temperature range. The glass will crack/burst due to excessive pressure created by expansion of mercury.
Answer:
the balls reached a height of 4.9985 m
Explanation:
Given the data in the question;
mass one m = 3.8 kg
mass two M = 2.1 kg
Initial velocities
u = 22 m/s
U = { moving downward} = 12 m/s
Now, using the law conservation of linear moment;
mu + MU = v( m + M )
we solve for "v" which is the velocity of the ball s after collision;
v = (mu + MU) / ( m + M )
so we substitute our given values into the equation
v = ( ( 3.8 × 22 ) + ( 2.1 × -12) ) / ( 3.8 + 2.1 )
v = ( 83.6 - 25.2 ) / 5.9
v = 58.4 / 5.9
v = 9.898 m/s
Now, we determine required height using the following relation;
v"² - v² = 2gh
where v" is the velocity at the top which is 0 m/s and g = -9.8 m/s²
0 - v² = 2gh
v² = -2gh
so we substitute
( 9.898 )² = -2 × -9.8 × h
97.97 = 19.6 × h
h = 97.97 / 19.6
h = 4.9985 m
Therefore, the balls reached a height of 4.9985 m