Answer : The pressure of the gas is, 0.964 atm
Solution : Given,
Volume of gas = 9040 ml = 9.040 L (1 L = 1000 ml)
Moles of gas = 0.447 moles
Temperature of gas =

Using ideal gas equation,

where,
P = pressure of the gas
V = volume of the gas
T = temperature of the gas
n = number of moles of gas
R = gas constant = 
Now put all the given values in this formula, we get the pressure of the gas.

By rearranging the terms, we get

Therefore, the pressure of the gas is, 0.964 atm
Answer:
The mass of the melted chocolate is 8 grams.
Explanation:
When something is melted including chocolate the mass remain the same or does not change, it is only the motion of the particles that changes and this is called law of conservation of mass.
The law states that mass can neither be created nor destroyed during chemical reaction but it remain the same.
Answer: NaCl (s) → NaCl (aq)
Explanation:
Entropy is often associated with the disorder or randomness of a system. Therefore, in each reaction, it is necessary to evaluate if the disorder increases or decreases to understand what happens to the entropy:
1) KCl (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCl (s) - In this reaction, we have only aqueous reactants in the beginning and in the product we have a precipitate. The solid state is more organised than the liquid, consequently, the entropy decreases.
2) NaCl (s) → NaCl (aq) - In this case, oposite to the first one, we go from a solid state to an aqueous state. The solvation of the ions Na⁺ and Cl⁻ is random while the solid state is very organised. Therefore, in this reaction the entropy increases.
3) 2NaOH (aq) + CO₂ (g) → Na₂CO₃ (aq) + H₂O (l) - In this reaction, the reactants have higher entropy because of the gas CO₂. Therefore, the entropy decreases.
4) C₂H₅OH (g) → C₂H₅OH (l) - In this reaction, the reactant is a gas and the product a liquid. Therefore, the entropy decreases.
Hi friend
--------------
Your answer
---------------------
CH4
Number of molecules in one mole of CH4 = 6.022 × 10²² [Avogadro's constant ]
Given number of molecules = 3.6 × 10²⁴
So,
------
Number of moles of CH4 i=

HOPE IT HELPS