Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
Answer:
CH3OH and NADH
Explanation:
The given chemical reaction is an redox reaction in which reduction and oxidation take place.
In the process of oxidation: electrons are loss while in the process of reduction: electrons are gained.
In the given redox reaction: CH3OH + NAD --> CH2O + NADH
NAD is reduced to NADH as NADH gains one hydrogen electron while CH3OH (methanol) is oxidized to CH2O (methanal) by losing electrons.
So, CH3OH (methanol) and NADH are the reduced forms while NAD and CH2O (methanal) are oxidized forms.
Answer:
The symbol for an atom indicates the element via its usual two letter symbol, the mass number as a left superscript, the atomic number as a left subscript (sometimes omitted), and the charge as a right superscript.
Explanation:
I hope that helps!! sorry if it dont!