Hey there!
I believe the answer is Combination (or Synthesis) Reaction.
Answer : The correct option is A.
Explanation :
Law of conservation of mass : In the chemical reaction, the mass of reactant must be equal to the mass of product.
A. 
The mass of reactant side = ![2C_4H_{10}+2Cl_2+12O_2=[8(12)+20(1)]+4(35.5)+24(16)=642g](https://tex.z-dn.net/?f=2C_4H_%7B10%7D%2B2Cl_2%2B12O_2%3D%5B8%2812%29%2B20%281%29%5D%2B4%2835.5%29%2B24%2816%29%3D642g)
The mass of product side = 
This means, the mass of product is equal to the mass of reactant. The mass remains conserved and obeys the law of conservation of mass.
The reaction B, C, D, E does not obey the law of conservation of mass.
Therefore, Only reaction A obey the law of conservation of mass.
Answer:
The configuration of the atom would be 2-8-2.
Explanation:
Any atom of an element combines with other element to complete its octet and become stable.
The electron configuration of the given atom is 2-8-6. That means the atom has 6 electrons in its outermost shell. To become stable the atom should have 8 electrons in its outermost shell. The given atom has 6 electrons so it either lose 6 electrons or gain 2 electrons to complete its octet.
But we know the atom having 5,6,7 electrons in its outermost shell they do not lose, they gain either 3 or 2 or 1 electrons to complete its octet.
So we say that atom with the electron configuration 2-8-6 bond with the atom having electron configuration 2-8-2.
25 ml was used to reach the pint
Answer:
Ammonia acts as an Arrhenius base because it increases the concentration of OH⁻ in aqueous solution.
Explanation:
The acid-base theory of Arrhenius explains that in aqueous solutions both acid and base dissociate, releasing ions in the solution. The acid release the ion H⁺ and some anion, and the base release the ion OH⁻ and some cation.
In water, the reaction of ammonia is:
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻
Because of that, ammonia is an Arrhenius base.