Answer:
- The solution that optimizes the profit is producing 0 small lifts and 50 large lifts.
- Below are all the steps explained in detail.
Explanation:
<u />
<u>1. Name the variables:</u>
- x: number of smaller lifts
- y: number of larger lifts
<u></u>
<u>2. Build a table to determine the number of hours each lift requires from each department:</u>
<u></u>
Number of hours
small lift large lift total per department
Welding department 1x 3y x + 3y
Packaging department 2x 1y 2x + y
<u></u>
<u>3. Constraints</u>
- 150 hours available in welding: x + 3y ≤ 150
- 120 hours available in packaging: 2x + y ≤ 120
- The variables cannot be negative: x ≥ 0, and y ≥ 0
Then you must:
- draw the lines and regions defined by each constraint
- determine the region of solution that satisfies all the constraints
- determine the vertices of the solution region
- test the profit function for each of the vertices. The vertex that gives the greatest profit is the solution (the number of each tupe that should be produced to maximize profits)
<u></u>
<u>4. Graph</u>
See the graph attached.
Here is how you draw it.
- x + 3y ≤ 150
- draw the line x + 3y = 150 (a solid line because it is included in the solution set)
- shade the region below and to the left of the line
- 2x + y ≤ 120
- draw the line 2x + y ≤ 120 (a solid line because it is included in the solution set)
- shade the region below and to the left of the line
- x ≥ 0 and y ≥ 0: means that only the first quadrant is considered
- the solution region is the intersection of the regions described above.
- take the points that are vertices inside the solutoin region.
<u>5. Test the profit function for each vertex</u>
The profit function is P(x,y) = 25x + 90y
The vertices shown in the graph are:
The profits with the vertices are:
- P(0,0) = 0
- P(0,50) = 25(0) + 90(50) = 4,500
- P(42,36) = 25(42) + 90(36) = 4,290
- P(60,0) = 25(60) + 90(0) = 1,500
Thus, the solution that optimizes the profit is producing 0 smaller lifts and 90 larger lifts.
All you have to do is plug in the given values into the given equation and evaluate.
The expression is,

But we have to analyze the problem carefully. This is a natural phenomenon that can be modelled by a decay function. The reason is that, after every hour we expect the medicine in the blood to keep reducing.
Therefore we use the decay function rather. This is given by,

where,


and

On substitution, we obtain;


Now, we take our calculators and look for the constant

,then type e raised to exponent of -1.4. If you are using a scientific or programmable calculator you will find this constant as a secondary function. Remember it is the base of the Natural logarithm.
If everything goes well, you should obtain;

This implies that,

Therefore after 10 hours 24.66 mg of the medicine will still remain in the system.
Answer:
Step-by-step explanation:
13500/3 = 4500
4500 x 2 = 9000
Answer:
3 and 4
Step-by-step explanation:
Answer:
-3/1
Step-by-step explanation:
The slope can be found by putting the rise over the run.
Pick 2 points on the graph that intercept the line.
I'll pick (0,2), and (1,-1)
Look at the rise.(How many places it goes up or down)
The rise vertical distance(rise), between the two points is -3.
Now look at the run(the horizontal distance.) It's 1.
Rise/Run = -3/1 AKA -3