A) The kinetic energy of an object is given by:

where m is the mass of the object, and v its speed. For the lion in our problem, m=45 kg and v=14.2 m/s, so its kinetic energy is

b) the increase in gravitational potential energy of the lion is given by:

where g is the gravitational acceleration, and

is the increase in altitude of the lion. In this problem,

, so the increase in gravitational potential energy is

c) When the fox reaches the top of the tree, its gravitational potential energy is

As it jumps, its kinetic energy is

So the total mechanical energy of the fox as it jumps is
Gravitational acceleration, g = GM/r^2. Additionally, for a satellite in a circular orbit, g = v^2/r
Where, G = Gravitational constant, M = Mass of earth, r = distance from the center of the earth to the satellite, v = linear speed of the satellite.
Equating the two expressions;
v^2/r = GM/r^2
v = Sqrt (GM/r);
But GM = Constant = 398600.5 km^3/sec^2
r = Altitude+Radius of the earth = 159+6371 = 6530 km
Substituting;
v = Sqrt (398600.5/6530) = 7.81 km/sec = 781 m/s
Done I don't know answer of this question or this photo is the answer can you tell me
If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.