The correct answer would be A. The symbol Eo would represent the cell potential of an electrolytic cell. This potential is being created by two metals that possess different properties. The energy per charge that is available from the reaction of the metals is the measure of this potential and is related to the equilibrium constant, K.
Answer: 226 Subscript 88 Baseline Upper R a right arrow Superscript 222 Subscript 86 Baseline Upper R n + Superscript 4 Subscript 2 Baseline Upper H e
Explanation:
Alpha decay : When a larger nuclei decays into smaller nuclei by releasing alpha particle. In this process, the mass number and atomic number is reduced by 4 and 2 units respectively.
The general representation of alpha decay reaction is:

Representation of Radium decays to form Radon

Thus 226 Subscript 88 Baseline Upper R a right arrow Superscript 222 Subscript 86 Baseline Upper R n + Superscript 4 Subscript 2 Baseline Upper H e represents alpha decay.
<h2>Answer with explanation </h2>
<h3><em>The starting diol for this molecule is :-</em></h3><h3><em>The starting diol for this molecule is :-D) ethan-1,2-diol.</em></h3>
<em>Hope </em><em>my </em><em>answer </em><em>is</em><em> helpful</em><em> to</em><em> you</em><em> </em><em>☺️</em>
Decomposition because one compound breaks down two smaller parts
<u>Answer:</u> The number of phosphorus atoms in given amount of copper(II) phosphate is 
<u>Explanation:</u>
We are given:
Moles of copper(II) phosphate
= 7.00 mol
1 mole of copper(II) phosphate contains 3 moles of copper, 2 moles of phosphorus and 8 moles of oxygen atoms
Moles of phosphorus in copper(II) phosphate = 
According to the mole concept:
1 mole of a compound contains
number of particles
So, 7.00 moles of copper(II) phosphate will contain =
number of phosphorus atoms.
Hence, the number of phosphorus atoms in given amount of copper(II) phosphate is 