(a) If a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
(b) For a kitten to be at 90th percentile, the minimum weight is 146.45 g.
<h3>
Weight distribution of the kitten</h3>
In a normal distribution curve;
- 2 standard deviation (2d) below the mean (M), (M - 2d) is at 2%
- 1 standard deviation (d) below the mean (M), (M - d) is at 16 %
- 1 standard deviation (d) above the mean (M), (M + d) is at 84%
- 2 standard deviation (2d) above the mean (M), (M + 2d) is at 98%
M - 2d = 125 g - 2(15g) = 95 g
M - d = 125 g - 15 g = 110 g
95 g is at 2% and 110 g is at 16%
(16% - 2%) = 14%
(110 - 95) = 15 g
14% / 15g = 0.93%/g
From 95 g to 99 g:
99 g - 95 g = 4 g
4g x 0.93%/g = 3.72%
99 g will be at:
(2% + 3.72%) = 5.72%
Thus, if a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
<h3>Weight of the kitten in the 90th percentile</h3>
M + d = 125 + 15 = 140 g (at 84%)
M + 2d = 125 + 2(15) = 155 g ( at 98%)
155 g - 140 g = 15 g
14% / 15g = 0.93%/g
84% + x(0.93%/g) = 90%
84 + 0.93x = 90
0.93x = 6
x = 6.45 g
weight of a kitten in 90th percentile = 140 g + 6.45 g = 146.45 g
Thus, for a kitten to be at 90th percentile, the approximate weight is 146.45 g
Learn more about standard deviation here: brainly.com/question/475676
#SPJ1
Answer:
6 m²
Explanation:
application of fluid pressure according to Pascal's principle for the two pistons is given as:

Where P₁ is the pressure at the input and P₂ is the pressure at the output.
But P₁ = F₁ / A₁ and P₂ = F₂ / A₂
Where F₁ and F₂ are the forces applied at the input and output respectively and A₁ and A₂ are the area of the input pipe and output pipe respectively
Since, 

But A₁ = 0.2 m², F₁ = 250 N, F₂ = 7500 N. Substituting values to get:

Therefore, the area of the pipe below the load is 6 m²
A staircase what makes it a lever is another objects used to displace the force better
The term that describes the action of a qubit that moves from superposition to 1 or 0 after measurement is Collapse.
<h3>What is collapse?</h3>
Collapse is the process that lead to the movement of qubit from a a state of superposition to 1 or 0 after measurements which make it to remain in that state.
Therefore, The term that describes the action of a qubit that moves from superposition to 1 or 0 after measurement is Collapse.
Learn more about collapse below.
brainly.com/question/23532927
#SPJ1