1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
2 years ago
13

Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12.00

Engineering
1 answer:
fgiga [73]2 years ago
6 0

Answer:

Here is the code.

Explanation:

#include<stdio.h>

int main()

{

int i, time_worked, over_time, overtime_pay = 0;

for (i = 1; i <= 10; i++)

{

 printf("\nEnter the time employee worked in hr ");

 scanf("%d", &time_worked);

 if (time_worked>40)

 {

  over_time = time_worked - 40;

  overtime_pay = overtime_pay + (12 * over_time);

 }

}

printf("\nTotal Overtime Pay Of 10 Employees Is %d", overtime_pay);

return 0;

}

Output :

Enter the time employee worked in hr 42

Enter the time employee worked in hr 45

Enter the time employee worked in hr 42

Enter the time employee worked in hr 41

Enter the time employee worked in hr 50

Enter the time employee worked in hr 51

Enter the time employee worked in hr 52

Enter the time employee worked in hr 53

Enter the time employee worked in hr 54

Enter the time employee worked in hr 55

Total Overtime Pay Of 10 Employees Is 1020.

You might be interested in
A 0.40-m3 insulated piston-cylinder device initially contains 1.3 kg of air at 30°C. At this state, the piston is free to move.
Setler79 [48]

Answer:

(a) The Final Temperature is 315.25 K.

(b) The amount of mass that has entered  0.5742 Kg.

(c) The work done is 56.52 kJ.

(d) The entrophy generation is 0.0398 kJ/kgK.

Explanation:

Explanation is in the following attachments.

6 0
3 years ago
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
Discuss the environmental concerns regarding microfibre products
zlopas [31]

I don't know

Explanation:

cfffffffffggg

8 0
3 years ago
Write the heat equation for each of the following cases:
jok3333 [9.3K]

Answer:

Explanation:

a) the steady-state, 1-D incompressible and no energy generation equation can be expressed as follows:

\dfrac{\partial^2T}{\partial x^2}=  \ 0  \  ;  \ if \  T = f(x)  \\ \\ \dfrac{\partial^2T}{\partial y^2}=  \ 0  \  ;  \ if \  T = f(y)  \\ \\ \dfrac{\partial^2T}{\partial z^2}=  \ 0  \  ;  \ if \  T = f(z)

b) For a transient, 1-D, constant with energy generation

suppose T = f(x)

Then; the equation can be expressed as:

\dfrac{\partial^2T}{\partial x^2} + \dfrac{Q_g}{k} = \dfrac{1}{\alpha} \dfrac{dT}{dC}

where;

Q_g = heat generated per unit volume

\alpha = Thermal diffusivity

c) The heat equation for a cylinder steady-state with 2-D constant and no compressible energy generation is:

\dfrac{1}{r}\times \dfrac{\partial}{\partial r }( r* \dfrac{\partial \ T }{\partial \ r}) + \dfrac{\partial^2 T}{\partial z^2 }= 0

where;

The radial directional term = \dfrac{1}{r}\times \dfrac{\partial}{\partial r }( r* \dfrac{\partial \ T }{\partial \ r}) and the axial directional term is \dfrac{\partial^2 T}{\partial z^2 }

d) The heat equation for a wire going through a furnace is:

\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [\dfrac{\partial ^2 T}{\partial ^2 t}+ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ]

since;

the steady-state is zero, Then:

\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ]'

e) The heat equation for a sphere that is transient, 1-D, and incompressible with energy generation is:

\dfrac{1}{r} \times \dfrac{\partial}{\partial r} \Big ( r^2 \times \dfrac{\partial T}{\partial r} \Big ) + \dfrac{Q_q}{K} = \dfrac{1}{\alpha}\times \dfrac{\partial T}{\partial t}

4 0
3 years ago
Discuss the difference between a dual split and a diagonal split master cylinder.
Anvisha [2.4K]

Answer:

The difference between the dual split Master cylinder and diagonal split Master cylinder is dual split it makes power brakes less prone to failure while diagonal split is when the left rear and right front brakes are on one hydraulic line while the right front and left rear brakes are on another.

7 0
2 years ago
Other questions:
  • Given a matrix, clockwise-rotate elements in it. Please add code to problem3.cpp and the makefile. Use the code in p3 to test yo
    8·1 answer
  • Looking at the response vehicles (pictured above), explain two options you have in order to abide by the Move
    8·1 answer
  • Compact fluorescent bulbs are much more efficient at producing light than are ordinary incandescent bulbs. They initially cost m
    11·1 answer
  • What does carbon addition to iron do, what does it produce, how does it change properties, what are its reflections? Describe in
    12·1 answer
  • The acceleration (in m/s^2) of a linear slider (undergoing rectilinear motion) within a If the machine can be expressed in terms
    5·1 answer
  • Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 19
    13·1 answer
  • What is this i dont understand this at all
    9·1 answer
  • Select the correct answer <br><br> What is the simplest definition of a manufacturing process?
    5·2 answers
  • Why do the quadrants in coordinate plane go anti-clockwise?.
    6·1 answer
  • Part A Identify the zero-force members in the truss. (Figure 1) (Hint: Use both visual inspection and analysis.) Check all that
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!