Use equations of motion to get the correct answer!
The mass of the football player is 250 kg.
<u>Explanation:</u>
Momentum is defined as the product of mass and velocity. So here the velocity (v) is given as 10 m/s and the momentum is given as 2500 kg m /s. So we can determine the mass (m) of the player by substituting the known terms in the formula of determining momentum as shown below.

As we know the value of momentum and velocity, the mass can be found as,

Thus, the mass of the football player is found to be 250 kg.
Answer:
The gravitational force on the elevator = 4500N
Explanation:
The given parameters are;
The force applied by the elevator, F = 4500 N
The acceleration of the elevator = Not accelerating
From Newton's third law of motion, the action of the cable force is equal to the reaction of the gravitational force on the elevator which is the weight, W and motion of the elevator as follows;
F = W + Mass of elevator × Acceleration of elevator
∴ F = W + Mass of elevator × 0 = W
F = 4500 N = W
The net force on the elevator is F - W = 0
The gravitational force on the elevator = W = 4500N.
Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.