The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
Explanation:
a. The source of centripetal force on the car is (3) the static friction force.
b. ac = v²/R = (20²)/50 = 8 m/s²
c. Fc = m(ac) = 1500(8) = 12 kN
d. μ = Fc/N = Fc/mg = 12000 / 1500(9.8) = 0.8163... ≈ 0.82
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
- The data for the first part of the experiment support the first hypothesis.
- As the force applied to the cart increased, the acceleration of the cart increased.
- Since the increase in the applied force caused the increase in the cart's acceleration, force and acceleration are directly proportional to each other, which is in accordance with Newton's second law.
When we state something about the results on the basis whether the observed data supports the original hypothesis, we say that we are concluding the results.
What is the relationship between force and acceleration based on Newton's 2nd law?
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Learn more about Newton's second law of motion brainly.com/question/13447525
#SPJ4