Answer:
We can conclude by saying that in the beginning current will increase but after sometime, it becomes saturated.
Explanation:
Note: No information on change in number of electron generated.
Since there is a collision, the electrons emitted will not reach the collector at same time. As the voltage is increased, the the speed with which the electrons will reach the collector starts to increase. Due to this, electric current will first increases till all the emitted electrons reach the collector. Since we are not provided with the information that number of electrons generated are changing, after increasing voltage current will increase for some time and then reaches a saturated state.
We can conclude by saying that in the beginning current will increase but after sometime it becomes saturated.
Answer:
Explanation:
We shall find electric field at origin due to two given charges sitting on the either side of origin .
Total field will add up due to their same direction .
Field due to a charge Q
= 9 x 10⁹ x Q / R² ; R is distance of point , Q is charge
Field due to first charge
= 9 x 10⁹ x 40 x 10⁻³ / 2² x 10⁻⁴
= 90 x 10¹⁰ N/C
Field due to second charge
= 9 x 10⁹ x 50 x 10⁻³ / 2² x 10⁻⁴
= 112.5 x 10¹⁰ N/C
Total field
= 202.5 x 10¹⁰ N/C
Force on given charge at origin
= charge x field
= 4 x 10⁻³ x 202.5 x 10¹⁰
= 810 x 10⁷ N .
Answer:
![g_{moon}=1.67 [m/s^{2} ]](https://tex.z-dn.net/?f=g_%7Bmoon%7D%3D1.67%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Explanation:
The weight of some mass is defined as the product of mass by gravitational acceleration. In this way using the following formula we can find the weight.

where:
w = weight [N]
m = mass = 0.06 [kg]
g = gravity acceleration = 10 [N/kg]
Therefore:
![w=0.06*10\\w=0.6[N]](https://tex.z-dn.net/?f=w%3D0.06%2A10%5C%5Cw%3D0.6%5BN%5D)
By Hooke's law we know that the force in a spring can be calculated by means of the following expression.

where:
k = spring constant [N/m]
x = deformed distance = 6 [cm] = 0.06 [m]
We can find the spring constant.
![k= F/x\\k=0.6/0.06\\k=10 [N/m]](https://tex.z-dn.net/?f=k%3D%20F%2Fx%5C%5Ck%3D0.6%2F0.06%5C%5Ck%3D10%20%5BN%2Fm%5D)
Since we use the same spring on the moon and the same mass, the constant of the spring does not change, the same goes for the mass.
![F_{moon}=k*0.01\\F = 10*0.01\\F=0.1[N]](https://tex.z-dn.net/?f=F_%7Bmoon%7D%3Dk%2A0.01%5C%5CF%20%3D%2010%2A0.01%5C%5CF%3D0.1%5BN%5D)
Since this force is equal to the weight, we can now determine the gravitational acceleration.
![F=m*g_{moon}\\g=F/m\\g = 0.1/0.06\\g_{moon} = 1.67[m/s^{2} ]](https://tex.z-dn.net/?f=F%3Dm%2Ag_%7Bmoon%7D%5C%5Cg%3DF%2Fm%5C%5Cg%20%3D%200.1%2F0.06%5C%5Cg_%7Bmoon%7D%20%3D%201.67%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
it would probably be the same but if the moon is closer gravity would infect us humans
Explanation: