This is because oxygen (2.8.6) requires two electrons on its valence shell to attain stable configuration (2.8.8). Hydrogen (1) on the other hand requires one electron on its valence shell to attain stable configuration (2). Therefore in a covalent bond, it requires two hydrogen and one oxygen to share electrons and achieve stable configuration.
Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Answer:
Cl
Explanation:
chlorine (2,8,7) is a non metal with highest electronegativity. Hence, it is most likely to form a negative ion with charge −1.
I hope it helps you
Answer:
growth limit for trees
Explanation:
the awnser is the growth limit for trees
Answer:
1.70 g.cm⁻³
Solution:
Data Given;
Mass = 84.7 g
Volume = 49.6 cm³
Density = ?
Formula Used;
Density = Mass ÷ Volume
Putting values,
Density = 84.7 g ÷ 49.6 cm³
Density = 1.70 g.cm⁻³