Answer:
Option B. 3.0 M
Explanation:
From the question given above, the following data were obtained:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity can simply be defined as the mole of solute per unit litre of the solution. Mathematically, it can be expressed as:
Molarity = mole of solute /Volume of solution
With the above formula, we can obtain the molarity of the solution as follow:
Volume of solution = 3.0 L
Mole of MgCl₂ = 9 moles
Molarity =?
Molarity = mole of solute /Volume of solution
Molarity = 9 / 3
Molarity = 3 mol/L = 3.0 M
Thus, the molarity of the solution is 3 M
Answer:
energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Explanation:energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Answer:
0.571 mol
Explanation:
Given data:
Number of moles of NaHCO₃ = 0.571 mol
Number of moles of CO₂ produced = ?
Solution:
Chemical equation:
NaHCO₃ + C₃H₆O₃ → CO₂ + C₃H₅NaO₃ + H₂O
Now we will compare the moles of CO₂ with NaHCO₃ from balance chemical equation.
NaHCO₃ : CO₂
1 : 1
0.571 : 0.571
So number of moles of CO₂ produced are 0.571.
When a solid (solute) comes in contact with the liquid (solvent), the solute goes about C) dissolution, in which the solid dissolves into the liquid.
~
Answer:
Calcium chloride (CaCl2) would help me eat my ice cream faster
Explanation:
Addition of salt to ice melts the lowers the freezing temperature of the ice thus melting the ice easily
Adding calcium chloride to my ice cream would help me eat it faster because the melting point of calcium chloride (772°C) is lower than that of sodium chloride (melting point is 801°C). Calcium chloride would melt my ice cream faster because of its lower melting point