Answer:
The answer to your question is the second option 
Step-by-step explanation:
Expression
![[\frac{(x^{2}y^{3})^{-2}}{(x^{6}y^{3}z)^{2}}]^{3}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%28x%5E%7B2%7Dy%5E%7B3%7D%29%5E%7B-2%7D%7D%7B%28x%5E%7B6%7Dy%5E%7B3%7Dz%29%5E%7B2%7D%7D%5D%5E%7B3%7D)
Process
1.- Divide the fraction in numerator and denominator
a) Numerator
[(x²y³)⁻²]³ = (x⁻⁴y⁻⁶)³ = x⁻¹²y⁻¹⁸
b) Denominator
[(x⁶y³z)²]²= (x¹²y⁶z²)³ = x³⁶y¹⁸z⁶
2.- Simplify like terms
a) x⁻¹²x⁻³⁶ = x⁻⁴⁸
b) y⁻¹⁸y⁻¹⁸= y⁻³⁶
c) z⁻⁶
3.- Write the fraction

Given the triangles ABC and PQR.
Angle A = Angle P
Angle B = Angle Q
Angle C = Angle R
Angle B = 3v+4
Angle Q = 8v-6
Let's find v
3v+4 = 8v-6
-5v = -10
v = 2
Angle B = 3v + 4
Angle B = 3(2) + 4
Angle B = 10.
The correct answer is letter C. 10
Answer:
This is called transitivity property