Answer is: -601,2 kJ/mol
Chemical reaction: Mg(OH)₂ → MgO + H₂O.
ΔHrxn = 37,5 kJ/mol.
ΔHf(Mg(OH)₂) = <span>−924,5 kJ/mol.
</span>ΔHf(H₂O) = <span>−285,8 kJ/mol.
</span>ΔHrxn -enthalpy of reaction.
ΔHf - enthalpy of formation.
<span>ΔHrxn=∑productsΔHf−∑reactantsΔHf.
</span>ΔHf(MgO) = -924,5 kJ/mol - (-285,8 kJ/mol) + 37,5 kj/mol.
ΔHf(MgO) = -601,2 kJ/mol.
Answer:
Single replacement reaction (aka single displacement reaction)
Explanation:
In a single replacement reaction, one element is substituted for another in a compound to create a new compound and a new element in the products. The general form is:
A + BC --> B + AC
In the case of this question, Cr and Fe "trade places."
This
can be solved using Dalton's Law of Partial pressures. This law states that the
total pressure exerted by a gas mixture is equal to the sum of the partial
pressure of each gas in the mixture as if it exist alone in a container. In
order to solve, we need the partial pressures of the gases given. Calculations
are as follows:<span>
<span>P = 3.00 atm + 1.80 atm + 0.29 atm + 0.18 atm + 0.10 atm</span></span>
<span><span>P = 5.37 atm</span></span>