The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams
Alright! Here are the answers:
1. C. Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
2. Aluminum (Al)
I’m pretty sure cooking an egg could be it
Answer:
A covalent chemical bond is one in which <u>outer-shell electrons of two atoms are shared so as to satisfactorily fill their respective orbitals</u>.
Explanation:
Covalent bonds are formed between two atoms having their electronegativity difference less than 1.7. In this type of bonding the valence electrons of one atoms forms molecular bond with the valence electrons of another atom. The electrons are mutually shared.
Covalent bond can be non-polar as for example formed between hydrogen and carbon atoms.
Also, covalent bond can be polar in nature as that formed between hydrogen and chlorine atoms because the chlorine atom is more electronegative and hence attracts the electrons more towards itself making density of electrons less on hydrogen atom.