Answer:
d= 0.242 mm
Explanation:
Slit width (d ) = ?
Screen distance ( D ) = 1.25 m
Wave length of light λ = 600 nm
Distance of n the dark fringe from centre
= n λ D / d
Here n = 2
so


d= 0.242 mm
Answer:
time spent = 0.2276
Explanation:
given data
distance = 135 mi
usual speed = 65 mph
today speed = 73 mph
solution
we get here time that is express as
time =
...................1
usual time =
= 2.0769 h
today time =
= 1.8493 h
so we get here time spent as
time spent = 2.0769 h - 1.8493 h
time spent = 0.2276
Answer:
a) 23.2 e V
b) energy of the original photon is 36.8 eV
Explanation:
given,
energy at ground level = -13.6 e V
energy at first exited state = - 3.4 e V
A photon of energy ionized from ground state and electron of energy K is released.
h ν₁ - 13.6 = K
K combine with photon in first exited state giving out photon of energy
= 26.6 e V
h c = 6.626 × 10⁻³⁴ × 3 × 10⁸ = 12400 e V A°
K + ( 3.4 ) = 26.6 e V
a) energy of free electron
K = 26.6 - 3.4 = 23.2 e V
b) energy of the original photon
h ν₁ - 13.6 = K
h ν₁ = 23.2 + 13.6
= 36.8 e V
energy of the original photon is 36.8 eV
Answer:
no they can't talk to each other bcoz of the lack of atmosphere.
Explanation:
l hope it helps you
Answer: All apply
The periodic table is an arrangement of the chemical elements in the form of a table, ordered by:
-Their atomic number (number of protons)
-Their configuration of electrons
-Their chemical properties
It was progressively developed over time as the scientific knowledge advanced; for this reason many modifications and corrections might be done in the future.
Its usefulness lies in the fact that it allows the existing elements to be organized in a more structured and coherent way, according to the chemical properties they possess. Dividing the table into rows and columns, which represent the periods and groups or families.
Then, with the location and classification of an element according to its group, we can determine how it acts by knowing its chemical and physical characteristics.
This is how with this configuration can be distinguished 4 sets of chemical elements, according to the ease of their atoms to lose or gain electrons, transforming into ions: metals, semimetals, non-metals and noble gases.
This has helped to predict the existence of various elements that have not yet been discovered, because by elements already located in the table and the periodicity found, <u>there are still empty spaces that indicate the composition of the element that has not yet been found</u>.
In addition, this table helps to simplify in some way the teaching of chemical elements and facilitates their learning, as well as their usage in the development of technological innovations.