Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
<em>To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). </em><em>The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). </em><em>Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.</em>
Explanation:
everything can be found in the picture
Answer:
"When face is placed between the concave mirror and its focus, it produces a magnified image. This enlarged image of face is helpful in makeup as even pores of skin are clearly visible."
Hello User,
Approximately 32 electrons can be fit in the fourth energy level.
Solution:
2+4+6+10+10=32
Answer:
c) It increases by a factor of 8
Explanation:
According to Faraday's law (and Lenz' law), the induced EMF is given as the rate of change of magnetic flux.
Mathematically:
V = -dФ/dt
Magnetic flux, Ф, is given as:
Ф = BA
where B = magnetic field strength and A = Area of object
Hence, induced EMF becomes:
V = -d(BA)/dt or -BA/t
If the magnetic field is increased by a factor of 4, (
) and the time required for the rod to move is decreased by a factor of 2 (
), the induced EMF becomes:


The EMF has increased by a factor of 8.