Explanation:
Given that,
Capacitor 
Resistor 
Peak voltage = 5.10 V
(A). We need to calculate the crossover frequency
Using formula of frequency

Where, R = resistor
C = capacitor
Put the value into the formula


(B). We need to calculate the
when 
Using formula of 

Put the value into the formula


(C). We need to calculate the
when 
Using formula of 


(D). We need to calculate the
when 
Using formula of 


Hence, This is the required solution.
In optics, a diaphragm is a thin opaque structure with an opening (aperture) at its center. The role of the diaphragm is to stop the passage of light, except for the light passing through the aperture.
Answer:
Explanation:
There's a formula for this:

F being force, k being the spring constant, and displacement being the change in x
We are given the force and the spring constant, so this is essentially isolating the Δx term. Do 60N/120N per meter. The newtons cancel out and you get a final answer of Δx = 0.5 meters
Answer:
7.2 cm
Explanation:
magnetic field, B = 0.301 T
speed, v = 7.92 x 10^5 m/s
mass, m = 4.39 x 10^-27 kg
q = 1.6 x 10^-19 C
The radius of singly changed ion is given by

where, m is the mass of ion, v be the speed of ion, B is the magnetic field and q be the charge

r = 0.072 m
r = 7.2 cm
Answer:
The volume of the block is equal to the volume of water displaced by the block.
Explanation:
Volume refers to the amount of space occupied by a given object (in this case the block). When an object such as the block is immersed in water, it displaces its own volume of water. This volume of water displaced is equal to the volume of the block. Hence we can write;
Final Volume of water - Initial Volume of water= Water Displaced = Volume of the block
Recall that the density of a body is given by;
Density= mass/volume
If we obtain the volume of the block by measuring the volume of water displaced by the block, then we weigh the block using a weighing balance, we can obtain the density of the block easily from the relationship shown above.