Answer:
Hypothesis
Explanation:
Refer to a trial solution to a problem as a hypothesis, often called an "educated guess" because it provides a suggested outcome based on the evidence.
Answer:
I = Δq / t
Explanation:
The quantity of electricity i.e charge is related to current and time according to the equation equation:
Q = It
Δq = It
Where:
Q => is the quantity of electricity i.e charge
I => is the current.
t => is the time.
Thus, we can rearrange the above expression to make 'I' the subject. This is illustrated below:
Δq = It
Divide both side by t
I = Δq / t
If something is traveling at 20 m/s constant speed AND its direction isn't changing, then its velocity is constant. Another way to say that is: Its acceleration is zero. Zero acceleration means zero NET force acting on the object, or a group of BALANCED forces acting on it, also called EQUILIBRIUM. The required answer is: YES.
If a real projectile is launched, the force of gravity acts on it vertically downward. There's no upward force acting on it to balance gravity. Therefore, the forces on the projectile are NOT balanced, there IS a net vertical force on it, and it's NOT in equilibrium. Too bad.
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity
The answer is c hope this helps