<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
Answer:
They move outwards.
They don't intersect each other at any point.
They show the electric field.
Explanation:
I think the correct answer from the choices would be that metals donate electrons to nonmetals. Ionic bonding involves transfer of valence electrons. The metal looses its valence electrons which makes it a cation while the nonmetal accepts these electrons.
Answer:
The force would be the same in both cases - option C.
Explanation:
The change in momentum is known as an impulse. In the two cases under consideration, the change in momentum is the same, thus impulse for both cases is the same.
Impulse is the average force multiplied by time interval.
I = F(average)*ΔT. Where F(average) is the average force and ΔT is the time interval.
The average force in both cases is the same since the collision time is the same.
Thus option C is the correct answer.