Yes. Your answer is correct. I hope you do well on the quiz or whatever it is.
Using the principle of floatation.
u = w............(a)
Upthrust of fluid is equal to the weight of the object.
Let the volume of the wood be V.
The upthrust u, is related to the volume submerged in water, and that is 1/5 of it volume, that is (1/5)V = 0.2V
Formula for upthrust, u = vdg
where v = volume of fluid displaced
d = density of fluid
g = acceleration due to gravity
weight, w = mg
where m = mass
g = acceleration due to gravity
From (a)
u = w
vdg = mg Cancel out g
vd = m
The v is equal to 0.2V, which is the submerged volume. Notice that the small letter v is volume of fluid displaced, and capital V is the volume of the solid.
d is density of fluid which is water in this case, 1000 kg/m³
0.2V * 1000 = m
200V = m
Hence the mass of the object is 200V kg.
But Density of solid = Mass of solid / Volume of solid
= 200V / V
= 200 kg/m³
Density of solid = 200 kg/m³
Explanation:
Mass of the astronaut, m₁ = 170 kg
Speed of astronaut, v₁ = 2.25 m/s
mass of space capsule, m₂ = 2600 kg
Let v₂ is the speed of the space capsule. It can be calculated using the conservation of momentum as :
initial momentum = final momentum
Since, initial momentum is zero. So,



So, the change in speed of the space capsule is 0.17 m/s. Hence, this is the required solution.
Answer
given,
resistance = 0.05 Ω
internal resistance of battery = 0.01 Ω
electromotive force = 12 V
a) ohm's law
V = IR
and volage
now,

inserting the values
I = 200 A
b) Voltage
V = I R
V = 200 x 0.05
V = 10 V
c) Power
P = I V
P = 200 x 10 = 2000 W
d) total resistance = 0.05 + 0.09 = 0.14 Ω
I = 80 A
V = 80 x 0.05 = 4 V
P = 4 x 80 = 320 W
Answer:
https://gml.noaa.gov/education/info_activities/pdfs/LA_radiation.pdf
Explanation: