Answer:
Some of the physical changes used by the industrial chemist in order to identify it is by scratching it with other metals in order to find the hardness of it. Trying to deform it in order to find the malleability, and to heat it and measure the temperature in order to find the melting point.
Some of the chemical changes used by the industrial chemist in order to identify it is by inserting it in water to observe that whether it reacts with it or not, if the reaction is violent, then the metal belongs to either group I or group II. The other method is to insert it in acids of distinct strength and to observe its reaction. The metals belonging to the second group react briskly with acids. The other metals react gradually with acids and others are almost inert.
The option which gives the correct mole ratios is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
<h3 /><h3>What is Mole ratio ?</h3>
It is a conversion factor between compounds in a chemical reaction, that is derived from the coefficients of the compounds in a balanced equation
Molar ratio also known as stoichiometry is the ratio in which the reactants and products are either formed or reacted in the given equation
The balanced equation for given reaction is as follows ;
2H₂S + 3O₂ --> 2SO₂ + 2H₂O
Molar ratio can be determined by the coefficients of the compounds in the balanced reaction
Coefficient is the number in front of the chemical compound and they are as follows
- H₂S - 2
- O₂ - 3
- SO₂ - 2
- H₂O - 2
Therefore, correct option is H₂S : SO₂ = 2 : 2 and O₂ : H₂O = 3 : 2
Learn more about mole ratio here ;
https://brainly.in/question/32799056
#SPJ1
Answer:To absorb small amounts of water in an organic solution.
Explanation:A drying agent is added to absorb small amounts of water, usually from an organic solution after its separation from an aqueous solution.
Answer:
Law of conservation of energy states that energy can neither be created nor can be destroyed but can be changed from one form to another
example:I am quite confused Sorry....❤plz follow me
<span>1. Tap water has a small concentration of H+ & OH- ions as well as water molecules, hence there would be permanent dipole-permanent dipole (p.d.-p.d.) forces of attraction between the water molecules (aka H-bonds) as well as ionic bonds between the H+ & OH- ions.
2. Distilled water does not have H+ & OH- ions, hence only H-bonds exist between the water molecules.
3. There are covalent bonds between the individual sugar molecules.
4. There are ionic bonds between the Na+ & Cl- ions in NaCl.
5. There are p.d.-p.d. forces of attraction between the Na+ ions and the O2- partial ions of the water molecules as well as between the Cl- ions and the H+ partial ions of the water molecules. There are also H-bonds between the individual water molecules and ionic bonds between the Na+ & Cl- ions (although these are in much lower abundance than in unsolvated solid NaCl).
6. There are i.d.-i.d. as well as p.d.-p.d. forces of attraction between the sugar molecules and the water molecules. There are also H-bonds between the individual water molecules and covalent bonds within the sugar molecules.</span>