<span>Ca(NO3)2 (aq) + Na2SO4 (aq) --> CaSO4 (s) + 2NaNO3 (aq)
Ca2+ (aq) + 2NO3- (aq) + 2 Na+ (aq) + SO4 (aq) --> CaSO4 (s) + 2Na+ (aq) + 2NO3- (aq)
cancel out spectator ions
Ca2+ (aq) + SO4 (aq) ---> CaSO4 (s hope it helps</span>
Pure substances can or can not be chemically combined.
Pure substances can be either elements or compounds, but not mixture. Mixture are different substances mixing together without being chemically combined, such as air, which is a mixture of oxygen, carbon dioxide, water etc. Mixture can be separated by physical methods, like filtration or decantation.
Meanwhile, elements are the substances that cannot be further separated by any means. No matter physical or chemical methods. Examples of elements are oxygen, hydrogen, neon and all the other ones from the periodic table. Compounds are basically elements joining together, but they’re chemically combined which means their electrons (kind of subatomic particle) are either shared or given away. These elements can only be separated by chemical methods like electrolysis or heating.
Therefore, as long as the substance cannot be separated by physical methods, it can be considered as a pure substance. We can now conclude that pure substance can be (element) or can not be (compound) chemically combined.
Answer:
A: molar ratio
Molar ratios state the proportions of reactants and products that are used and formed in a chemical reaction.
Answer;
Yes; this reaction be spontaneous if coupled with the hydrolysis of ATP.
Explanation;
The reaction converting glycerol to glycerol-3-phosphate (energetically unfavorable) can be coupled with the conversion of ATP to ADP (energetically favorable):
Glycerol + HPO42 ⟶glycerol-3-phosphate+H2O
ATP + H2O⟶ ADP + HPO42− + H+
<h3>
Answer:</h3>
56.11 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Compound] KOH
<u>Step 2: Identify</u>
[PT] Molar Mass of K - 39.10 g/mol
[PT] Molar Mass of O - 16.00 g/mol
[PT] Molar Mass of H - 1.01 g/mol
<u>Step 3: Find</u>
39.10 + 16.00 + 1.01 = 56.11 g/mol