1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
3 years ago
11

20-point physics question! :D

Physics
2 answers:
Alex3 years ago
8 0
Your hands get warm by a fire because chemical energy is converted into heat energy. 

The wood - has chemical energy when you burn it, and then, heat waves rise to the air, which means that we went from :

Chemical energy ⇒ Heat energy

Alright, now, also think about, that energy can never be created not destroyed, so it was obviously transferred, and yet conserved. 

If this doesn't make sense, please message me, or comment below. :))
Virty [35]3 years ago
6 0
I think, it must be a chemical. Because the fire is a chemical reaction. So, the chemical energy converted to heat energy.
You might be interested in
Suppose two comets, comet A and comet B, were orbiting the sun, having the same average orbital radii. If comet A had a higher o
zhannawk [14.2K]

Answer:

a. A

Explanation:

Kepler's First Law says that the orbits of planets are ellipses with the sun at one focus of the ellipse. Moreover, Kepler’s Second Law says that the line joining the planet to the sun sweeps out equal areas in equal times as it moves along its orbit. Finally, Kepler’s Third Law says that the ratio of the squares of the periods for two planets is equal to the ratio of the cubes of their semi-major axes.

By these laws, the comet A will have lower orbital speed.

3 0
3 years ago
In a real hemoglobin molecule, the tendency of oxygen to bind to a heme site increases as the other three heme sites become occu
sasho [114]
Since there are four states, then the grand partition function of the system is

Z = 1+2 e^{(0.55eV+ \alpha )/kT} +e^{(1.3eV+ 2\alpha )/kT}

where α is the chemical potential

Then, the occupancy of the system is

bar \ n=(e^{(0.55eV+ \alpha )/kT} +e^{(1.3eV+ 2\alpha )/kT})/Z

Then using this equation, \alpha =-kT(V Z_{int} /N v_{Q}) and approximating Z_int to be kT/0.00018 eV, the model would look as that attached in the figure. That is the occupancy vs. pressure graph. 

There are more occupancies when the oxygen is high (high pressure) especially in the lungs. Heme sites tend to be occupied by oxygen. 

7 0
3 years ago
Lake Baikal in Siberia has a maximum depth of 1642 m. What is the water
Veseljchak [2.6K]

Explanation:

Fluid gauge pressure is:

P = ρgh

where ρ is the fluid density and h is the depth of the fluid.

P = (1000 kg/m³) (9.8 m/s²) (1642 m)

P = 16,091,600 Pa

Rounded to four significant figures, the gauge pressure is 16.09 MPa.

3 0
3 years ago
A tree loses water to the air by the process of transpiration at the rate of 110 g/h. This water is replaced by the upward flow
Ksivusya [100]

Answer:

The answer is 1.87nm/s.

Explanation:

The 110g/hr  water loss must be replaced by 110g/hr of sap. 110g of sap corresponds to a volume of  

110g \div \dfrac{1040*10^3g}{1*10^6cm^3}  = 106cm^3

thus rate of sap replacement is

106cm^3/hr = 106*10^{-6}m^3/3600s  = 2.94*10^{-8}m^3/s

The volume of sap in the vessel of length x is

V = Ax,

where A is the cross sectional area of the vessel.

For 2000 such vessels, the volume is

V = 2000Ax

taking the derivative of both sides we get:

\dfrac{dV}{dt} = 2000A \dfrac{dx}{dt}

on the left-hand-side \dfrac{dx}{dt} is the velocity v of the sap, and on right-hand-side \dfrac{dV}{dt}  = 2.94*10^{-8}m^3/s; therefore,

2.94*10^{-8}m^3/s=2000Av

and since the cross-sectional area is

A = \pi (\dfrac{100*10^{-3}m}{2} )^2 = 7.85*10^{-3}m^2;

therefore,

2.94*10^{-8}m^3/s =2000(7.85*10^{-3}m^2)v

solving for v we get:

v = \dfrac{2.94*10^{-8}m^3/s}{2000(7.85*10^{-3}m^2)}

\boxed{v =1.875*10^{-9}m/s = 1.875nm/s}

which is the upward speed of the sap in each vessel.

8 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
Other questions:
  • Two identical, thin rods, each with mass m and length L, are joined at right angles to form an L-shaped object. This object is b
    7·2 answers
  • a diver on a board 7.5m above the water walks off the end with a horizontal velocity of 2.3 m/s when they hit the surface of the
    7·1 answer
  • What is produced when calcium reacts with fluorine in a synthesis reaction
    10·2 answers
  • In the figure above, a box of mass 2.5kg is initially at rest on a rough inclined plane. Assuming the
    15·1 answer
  • A transverse wave is set up in a very long string. The oscillator is set at 20.0 Hz, and the wave speed is 78 m/s. The amplitude
    6·1 answer
  • In 1909 Robert Millikan was the first to find the charge of an electron in his now-famous oil drop experiment. In the experiment
    14·1 answer
  • Which best describes a difference between electric current and static electricity?
    6·1 answer
  • How much work is done if a 4500 N piano is lifted 10 m?
    13·1 answer
  • What is the average speed of a car that travels 30 m in the 3 secs and 2 m 4 secs and 20 m 5 secs
    14·1 answer
  • I don't understand when to use the formule with the constant k, and when to use the formula without it.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!