Answer:
Explanation:
<h2><u>Given</u> :-</h2>
<h2><u>To Find</u> :-</h2>
<h2><u>Formula to be used</u> :-</h2>
Where,
- K.E. = Kinetic energy possessed by the body
- M = Mass of the body
- V = Velocity of the body
<h2><u>Solution</u> :-</h2>








- Velocity of the vehicle at the instant is

Answer:
depends... do you add suger to your ketchup?
Explanation:
<h3>Given, </h3>
Force,F = 4000 N
Area,a = 50 m²
<h3>We know that, </h3>
Pressure = Force/Area
★ Putting the values in the above formula,we get:


A dielectric, insulating material, or an extremely bad conductor of electrical current. Due to the absence of loosely bound, or free, electrons that could wander through the material, unlike metals, dielectrics practically do not conduct current when exposed to an electric field. Electric polarization takes place instead.
<h3>What is an Electric field?</h3>
- An electric field is an electrical property associated with every point in the space of any form of charge. An electric field is also described as the electric force per unit charge.
- Variable magnetic fields or electric charges are frequently the cause of electric fields. Volts per meter, a unit used in the SI, express electric field strength.
- The force acting on the positive charge is assumed to be exerted in the direction of the field. The electric field is directed radially inwards toward the negative point charge and radially outwards from the positive charge.
- Electric charge or magnetic fields with variable amplitudes can produce an electric field. The attraction forces that keep together atomic nuclei and electrons at the atomic scale are brought on by the electric field.
The phenomenon of polarization when a dielectric slab is subjected to an electric field:
A dielectric, insulating material, or an extremely bad conductor of electrical current. Due to the absence of loosely bound, or free, electrons that could wander through the material, unlike metals, dielectrics practically do not conduct current when exposed to an electric field. Electric polarization takes place instead.
To learn more about the electric field, refer to:
brainly.com/question/14372859
#SPJ9
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.