Answer:
153.86
Step-by-step explanation:
Do 3.14 times 7 to the power of 2
Hope this helps
That is so easy, the answer is 1 right angle.North is to front and east is to the right so it is just 1 right angle.
Answer: 9b+4n+6d+7
Step-by-step explanation:
1. 9b+9+4n−4+6d+2
2. 9b+4n+6d+(9-4+2)
3. 9b+4n+6d+7
Gcf (57,27) = <span><span><span>57×27/</span><span>lcm(57,27)</span></span>=<span>1539/513</span></span> = 3
The midpoint of the line segment with endpoints at the given coordinates (-6,6) and (-3,-9) is ![\left(\frac{-9}{2}, \frac{-3}{2}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cfrac%7B-9%7D%7B2%7D%2C%20%5Cfrac%7B-3%7D%7B2%7D%5Cright%29)
<u>Solution:</u>
Given, two points are (-6, 6) and (-3, -9)
We have to find the midpoint of the segment formed by the given points.
The midpoint of a segment formed by
is given by:
![\text { Mid point } \mathrm{m}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Mid%20point%20%7D%20%5Cmathrm%7Bm%7D%3D%5Cleft%28%5Cfrac%7Bx_%7B1%7D%2Bx_%7B2%7D%7D%7B2%7D%2C%20%5Cfrac%7By_%7B1%7D%2By_%7B2%7D%7D%7B2%7D%5Cright%29)
![\text { Here in our problem, } x_{1}=-6, y_{1}=6, x_{2}=-3 \text { and } y_{2}=-9](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Here%20in%20our%20problem%2C%20%7D%20x_%7B1%7D%3D-6%2C%20y_%7B1%7D%3D6%2C%20x_%7B2%7D%3D-3%20%5Ctext%20%7B%20and%20%7D%20y_%7B2%7D%3D-9)
Plugging in the values in formula, we get,
![\begin{array}{l}{m=\left(\frac{-6+(-3)}{2}, \frac{6+(-9)}{2}\right)=\left(\frac{-6-3}{2}, \frac{6-9}{2}\right)} \\\\ {=\left(\frac{-9}{2}, \frac{-3}{2}\right)}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7Bm%3D%5Cleft%28%5Cfrac%7B-6%2B%28-3%29%7D%7B2%7D%2C%20%5Cfrac%7B6%2B%28-9%29%7D%7B2%7D%5Cright%29%3D%5Cleft%28%5Cfrac%7B-6-3%7D%7B2%7D%2C%20%5Cfrac%7B6-9%7D%7B2%7D%5Cright%29%7D%20%5C%5C%5C%5C%20%7B%3D%5Cleft%28%5Cfrac%7B-9%7D%7B2%7D%2C%20%5Cfrac%7B-3%7D%7B2%7D%5Cright%29%7D%5Cend%7Barray%7D)
Hence, the midpoint of the segment is ![\left(\frac{-9}{2}, \frac{-3}{2}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cfrac%7B-9%7D%7B2%7D%2C%20%5Cfrac%7B-3%7D%7B2%7D%5Cright%29)